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Best Practices for Peer Code Review 
Introduction  

It’s common sense that peer code review – in which software developers 
review each other’s code before releasing software to QA – identifies bugs, 
encourages collaboration, and keeps code more maintainable. 
 
But it’s also clear that some code review techniques are inefficient and 
ineffective. The meetings often mandated by the review process take time 
and kill excitement. Strict process can stifle productivity, but lax process 
means no one knows whether reviews are effective or even happening.  And 
the social ramifications of personal critique can ruin morale.  
 
This whitepaper describes 11 best practices for efficient, lightweight peer 
code review that have been proven to be effective by scientific study and by 
Smart Bear's extensive field experience.  Use these techniques to ensure your 
code reviews improve your code – without wasting your developers' time. 
 
 

1.  Review fewer than 200-400 lines of code at a time. 
The Cisco code review study (see sidebar for details) showed that for optimal 
effectiveness, developers should review fewer than 200-400 lines of code 
(LOC) at a time. Beyond that, the ability to find defects diminishes. At this rate, 
with the review spread over no more than 60-90 minutes, you should get a 
70-90% yield; in other words, if 10 defects existed, you’d find 7-9 of them.  
 
The graph on the following page, which plots defect density against the 
number of lines of code under review, supports this rule.  Defect density is the 
number of defects per 1000 lines of code.  As the number of lines of code 
under review grows beyond 300, defect density drops off considerably. 
 
In this case, defect density is a measure of “review effectiveness.”  If two 
reviewers review the same code and one finds more bugs, we would consider 
her more effective. Figure 1 shows how, as we put more code in front of a 
reviewer, her effectiveness at finding defects drops. This result makes sense – 
the reviewer probably doesn’t have a lot of time to spend on the review, so 
inevitably she won't do as good a job on each file. 

The World’s Largest Code Review 
Study at Cisco Systems® 
Our team at Smart Bear Software has spent 
years researching existing code review studies 
and collecting “lessons learned” from more 
than 6000 programmers at 100+ companies. 
Clearly people find bugs when they review 
code – but the reviews often take too long to 
be practical! We used the information gleaned 
through years of experience to create the 
concept of lightweight code review. Using 
lightweight code review techniques, 
developers can review code in 1/5th the time 
needed for full “formal” code reviews. We also 
developed a theory for best practices to 
employ for optimal review efficiency and value, 
which are outlined in this white paper. 
 
To test our conclusions about code review in 
general and lightweight review in particular, 
we conducted the world’s largest-ever 
published study on code review, 
encompassing 2500 code reviews, 50 
programmers, and 3.2 million lines of code at 
Cisco Systems®. For ten months, the study 
tracked the MeetingPlace® product team, 
distributed across Bangalore, Budapest, and 
San José.   
 
At the start of the study, we set up some rules 
for the group: 

• All code had to be reviewed before it was 
checked into the team’s Perforce version 
control software. 

• Smart Bear’s Code Collaborator code 
review software tool would be used to 
expedite, organize, and facilitate all code 
review.  

• In-person meetings for code review were 
not allowed. 

• The review process would be enforced by 
tools.  

• Metrics would be automatically collected 
by Code Collaborator, which provides 
review-level and summary-level reporting.
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2.  Aim for an inspection rate of less than 300-500 LOC/hour.  
Take your time with code review. Faster is not better. Our research shows that you’ll achieve optimal results at an 
inspection rate of less than 300-500 LOC per hour. Left to their own devices, reviewers’ inspection rates will vary widely, 
even with similar authors, reviewers, files, and review size.  
 
To find the optimal inspection rate, we compared defect density with how fast the reviewer went through the code. Again, 
the general result is not surprising: if you don't spend enough time on the review, you won’t find many defects. If the 
reviewer is overwhelmed by a large quantity of code, he won’t give the same attention to every line as he might with a 
small change. He won’t be able to explore all ramifications of the change in a single sitting.  
 
So – how fast is too fast? Figure 2 shows the answer: reviewing faster than 400-500 LOC/hour results in a severe drop-off 
in effectiveness. And at rates above 1000 LOC/hour, you can probably conclude that the reviewer isn’t actually looking at 
the code at all.  

 

   More on the Cisco Study… 
After ten months of monitoring, the study 
crystallized our theory: done properly, lightweight 
code reviews are just as effective as formal ones – 
but are substantially faster (and less annoying) to 
conduct! Our lightweight reviews took an average 
of 6.5 hours less time to conduct than formal 
reviews, but found just as many bugs.  
 
Besides confirming some theories, the study 
uncovered some new rules, many of which are 
outlined in this paper. Read on to see how these 
findings can help your team produce better code 
every day. Figure 1:  Defect density dramatically decreases 

when the number of lines of inspection goes 
above 200, and is almost zero after 400.

Figure 2: Inspection effectiveness falls off when 
greater than 500 lines of code are under review.   

Important Definitions 
 Inspection Rate:  How fast are we able to review 

code? Normally measured in kLOC (thousand Lines 

Of Code) per man-hour. 

 Defect Rate:  How fast are we able to find defects? 

Normally measured in number of defects found per 
man-hour. 

 Defect Density:  How many defects do we find in a 

given amount of code (not how many there are)? 

Normally measured in number of defects found per 
kLOC. 
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3.  Take enough time for a proper, slow review, but not more than 60-90 minutes.  
We’ve talked about how you shouldn’t review code too fast for best results – but you also shouldn’t review too long in 
one sitting. After about 60 minutes, reviewers simply wear out and stop finding additional defects. This conclusion is well-
supported by evidence from many other studies besides our own. In fact, it’s generally known that when people engage 
in any activity requiring concentrated effort, performance starts dropping off after 60-90 minutes.  

 
Given these human limitations, a reviewer will probably not be 
able to review more than 300-600 lines of code before his 
performance drops.  

 
On the flip side, you should always spend at least five minutes reviewing code – even if it’s just one line. Often a single line 
can have consequences throughout the system, and it’s worth the five minutes to think through the possible effects a 
change can have. 
 
 

4.  Authors should annotate source code before the review begins. 
It occurred to us that authors might be able to eliminate most defects before a review even begins. If we required 
developers to double-check their work, maybe reviews could be completed faster without compromising code quality. As 
far as we could tell, this idea specifically had not been studied before, so we tested it during the study at Cisco. 
 
The idea of “author preparation” is that authors should annotate their source code before the review begins. We invented 
the term to describe a certain behavior pattern we measured during the study, exhibited by about 15% of the reviews. 
Annotations guide the reviewer through the changes, showing which files to look at first and defending the reason and 
methods behind each code modification. These 
notes are not comments in the code, but rather 
comments given to other reviewers.  
 
Our theory was that because the author has to 
re-think and explain the changes during the 
annotation process, the author will himself 
uncover many of the defects before the review 
even begins, thus making the review itself more 
efficient. As such, the review process should yield 
a lower defect density, since fewer bugs remain. 
Sure enough, reviews with author preparation have 

barely any defects compared to reviews without 
author preparation.  

 
We also considered a pessimistic theory to 
explain the lower bug findings. What if, when the 
author makes a comment, the reviewer becomes 
biased or complacent, and just doesn’t find as 

Figure 3: The striking effect of author preparation 
on defect density. 

You should never review code for more than 90 

minutes at a stretch. 
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many bugs? We took a random sample of 300 reviews to investigate, and the evidence definitively showed that the 
reviewers were indeed carefully reviewing the code – there were just fewer bugs. 

 
 

5.  Establish quantifiable goals for code review and capture metrics so you can improve your 
processes.   
As with any project, you should decide in advance on the goals of the code review process and how you will measure its 
effectiveness. Once you’ve defined specific goals, you will be able to judge whether peer review is really achieving the 
results you require.   
 
It’s best to start with external metrics, such as “reduce support calls by 20%,” or “halve the percentage of defects injected 
by development.” This information gives you a clear picture of how your code is doing from the outside perspective, and 
it should have a quantifiable measure – not just a vague “fix more bugs.” 
 
However, it can take a while before external metrics show results.  Support calls, for example, won’t be affected until new 
versions are released and in customers’ hands.  So it’s also useful to watch internal process metrics to get an idea of how 
many defects are found, where your problems lie, and how long your developers are spending on reviews. The most 
common internal metrics for code review are inspection rate, defect rate, and defect density. 
 
Consider that only automated or tightly-controlled processes can give you repeatable metrics – humans aren’t good at 
remembering to stop and start stopwatches. For best results, use a code review tool that gathers metrics automatically so 
that your critical metrics for process improvement are accurate.  
 
To improve and refine your processes, collect your metrics and tweak your processes to see how changes affect your 
results. Pretty soon you’ll know exactly what works best for your team. 
 
 

6.  Checklists substantially improve results for both authors and reviewers.  
Checklists are a highly recommended way to find the things you forget to do, and are useful for both authors and 
reviewers. Omissions are the hardest defects to find – after all, it’s hard to review something that’s not there. A checklist is 
the single best way to combat the problem, as it reminds the reviewer or author to take the time to look for something 
that might be missing. A checklist will remind authors and reviewers to confirm that all errors are handled, that function 
arguments are tested for invalid values, and that unit tests have been created.  
 
Another useful concept is the personal checklist.  Each person 
typically makes the same 15-20 mistakes. If you notice what 
your typical errors are, you can develop your own personal 
checklist (PSP, SEI, and CMMI recommend this practice too). 
Reviewers will do the work of determining your common mistakes. All you have to do is keep a short checklist of the 
common flaws in your work, particularly the things you forget to do.  
 
As soon as you start recording your defects in a checklist, you will start making fewer of them.  The rules will be fresh in 
your mind and your error rate will drop.  We’ve seen this happen over and over. 

Checklists are especially important for reviewers, 

since if the author forgot it, the reviewer is likely to 

miss it as well.
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For more detailed information on checklists plus a sample checklist, get yourself a free copy of the book, Best Kept Secrets of 

Peer Code Review, at www.CodeReviewBook.com.  

 
 

7.  Verify that defects are actually fixed!  
OK, this “best practice” seems like a no-brainer. If you’re going to all of the trouble of reviewing code to find bugs, it 
certainly makes sense to fix them! Yet many teams who review code don’t have a good way of tracking defects found 
during review, and ensuring that bugs are actually fixed before the review is complete.   It’s especially difficult to verify 
results in e-mail or over-the-shoulder reviews. 
 
Keep in mind that these bugs aren’t usually logged in the team’s usual defect tracking system, because they are bugs 
found before code is released to QA, often before it’s even checked into version control. So, what’s a good way to ensure 
that defects are fixed before the code is given the All Clear sign? We suggest using good collaborative review software to 
track defects found in review. With the right tool, reviewers can logs bugs and discuss them with the author. Authors then 
fix the problems and notify reviewers, and reviewers must verify that the issue is resolved. The tool should track bugs 
found during review and prohibit review completion until all bugs are verified fixed by the reviewer (or consciously 
postponed to future releases and tracked using an established process).   
 
If you’re going to go to the trouble of finding the bugs, make sure you’ve fixed them all! 
 
Now that you’ve learned best practices for the process of code review, we’ll discuss some social effects and how you can manage 
them for best results. 

 
 

8.  Managers must foster a good code review culture in which finding defects is viewed 
positively.   
Code review can do more for true team building than almost any other technique we’ve seen – but only if managers 
promote it at a means for learning, growing, and communication. It’s easy to see defects as a bad thing – after all they are 
mistakes in the code – but fostering a negative attitude towards defects found can sour a whole team, not to mention 
sabotage the bug-finding process. 
 
Managers must promote the viewpoint that defects are positive. After all, each one is an opportunity to improve the code, 

and the goal of the bug review process is to make the code as 
good as possible. Every defect found and fixed in peer review is a 
defect a customer never saw, another problem QA didn’t have to 
spend time tracking down. 
 
Teams should maintain the attitude that finding defects means 
the author and reviewer have successfully worked as a team to 
jointly improve the product.  It’s not a case of “the author made a 

defect and the review found it.”  It’s more like a very efficient form of pair-programming. 
 

The point of software code review is to 

eliminate as many defects as possible – 

regardless of who “caused” the error. 
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Reviews present opportunities for all developers to correct bad habits, learn new tricks and expand their capabilities. 
Developers can learn from their mistakes – but only if they know what their issues are.  And if developers are afraid of the 
review process, the positive results disappear.  
 
Especially if you’re a junior developer or are new to a team, defects found by others are a good sign that your more 
experienced peers are doing a good job in helping you become a better developer. You’ll progress far faster than if you 
were programming in a vacuum without detailed feedback.  
 
To maintain a consistent message that finding bugs is good, management must promise that defect densities will never 
be used in performance reports. It’s effective to make these kinds of promises in the open – then developers know what 
to expect and can call out any manager that violates a rule made so public.  
 
Managers should also never use ever buggy code as a basis for negative performance review. They must tread carefully 
and be sensitive to hurt feelings and negative responses to criticism, and continue to remind the team that finding 
defects is good. 
 
 

9.  Beware the “Big Brother” effect. 
“Big Brother is watching you.” As a developer, you automatically assume it’s true, especially if your review metrics are 
measured automatically by review-supporting tools. Did you take too long to review some changes? Are your peers 
finding too many bugs in your code? How will this affect your next performance evaluation? 
 
Metrics are vital for process measurement, which in turn provides the basis for process improvement. But metrics can be 
used for good or evil. If developers believe that metrics will be used against them, not only will they be hostile to the 
process, but they will probably focus on improving their metrics rather than truly writing better code and being more 
productive. 
 
Managers can do a lot to improve the problem. First and foremost – 
they should be aware of it and keep an eye out to make sure they’re 
not propagating the impression that Big Brother is indeed 
scrutinizing every move.  
 
Metrics should be used to measure the efficiency of the process or 
the effect of a process change.  Remember that often the most difficult code is handled by your most experienced 
developers; this code in turn is more likely to be more prone to error – as well as reviewed heavily (and thus have more 
defects found).  So large numbers of defects are often more attributable to the complexity and risk of a piece of code than 
to the author’s abilities. 
 
If metrics do help a manager uncover an issue, singling someone out is likely to cause more problems than it solves. We 
recommend that managers instead deal with any issues by addressing the group as a whole. It’s best not to call a special 
meeting for this purpose, or developers may feel uneasy because it looks like there’s a problem. Instead, they should just 
roll it into a weekly status meeting or other normal procedure. 
 

Metrics should never be used to single 

out developers, particularly in front of 

their peers. This practice can seriously 

damage morale.
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Managers must continue to foster the idea that finding defects is good, not evil, and that defect density is not correlated 
with developer ability. Remember to make sure it’s clear to the team that defects, particularly the number of defects 
introduced by a team member, shouldn’t be shunned and will never be used for performance evaluations. 
 
 

10.  The Ego Effect: Do at least some code review, even if you don’t have time to review it all.   
Imagine yourself sitting in front of a compiler, tasked with fixing a small bug. But you know that as soon as you say “I’m 
finished,” your peers – or worse, your boss – will be critically examining your work. Won’t this change your development 
style? As you work, and certainly before you declare code-complete, you’ll be a little more conscientious. You’ll be a better 
developer immediately because you want the general timbre of the “behind your back” conversations to be, “His stuff is 
pretty tight. He’s a good developer;” not “He makes a lot of silly mistakes. When he says he’s done, he’s not.” 
 
The “Ego Effect” drives developers to write better code because they know that others will be looking at their code and 
their metrics. And no one wants to be known as the guy who makes all those junior-level mistakes. The Ego Effect drives 
developers to review their own work carefully before passing it on to others. 
 
A nice characteristic of the Ego Effect is that it works equally well whether reviews are mandatory for all code changes or 
just used as “spot checks” like a random drug test. If your code has a 1 in 3 chance of being called out for review, that’s still 
enough of an incentive to make you do a great job. However, spot checks must be frequent enough to maintain the Ego 
Effect. If you had just a 1 in 10 chance of getting reviewed, you might not be as diligent. You know you can always say, 
“Yeah, I don’t usually do that.”  
 
Reviewing 20-33% of the code will probably give you maximal Ego Effect benefit with minimal time expenditure, and 
reviewing 20% of your code is certainly better than none! 

 
 

11.  Lightweight-style code reviews are efficient, practical, and effective at finding bugs. 
There are several main types, and countless variations, of code review, and the best practices you’ve just learned will work 
with any of them. However, to fully 
optimize the time your team spends in 
review, we recommend a tool-assisted 
lightweight review process.  
 
Formal, or heavyweight, inspections have 
been around for 30 years – and they are 
no longer the most efficient way to 
review code. The average heavyweight 
inspection takes nine hours per 200 lines 
of code. While effective, this rigid process 
requires three to six participants and 
hours of painful meetings paging 
through code print-outs in exquisite 
detail. Unfortunately, most organizations 

Figure 4: Code Collaborator, the lightweight code review 
tool used in the Cisco study 



Best Practices for Peer Code Review 

 

Smart Bear Software  | 12885 Research Blvd, Suite 209B  |  Austin, TX  78750-3221  |  512.257.1569  |  www.SmartBearSoftware.com 

can’t afford to tie up people for that long – and most programmers despise the tedious process required. In recent years, 
many development organizations have shrugged off the yoke of meeting schedules, paper-based code readings, and 
tedious metrics-gathering in favor of new lightweight processes that eschew formal meetings and lack the overhead of 
the older, heavy-weight processes.  
 
We used our case Study at Cisco to determine how the lightweight techniques compare to the formal processes. The 
results showed that lightweight code reviews take 1/5th the time (or less!) of formal reviews and they find just as many 
bugs!  
 
While several methods exist for lightweight code review, such as “over the shoulder” reviews and reviews by email, the 
most effective reviews are conducted using a collaborative software tool to facilitate the review. A good lightweight code 
review tool integrates source code viewing with “chat room” collaboration to free the developer from the tedium of 
associating comments with individual lines of code. These tools package the code for the author, typically with version 
control integration, and then let other developers comment directly on the code, chat with the author and each other to 
work through issues, and track bugs and verify fixes. No meetings, print-outs, stop-watches, or scheduling required. With a 
lightweight review process and a good tool to facilitate it, your team can conduct the most efficient reviews possible and 
can fully realize the substantial benefits of code review.   
 

 
Summary 
So now you’re armed with an arsenal of best practices to ensure that you get the 
most of out your time spent in code reviews – both from a process and a social 
perspective. Of course you have to actually do code reviews to realize the 
benefits. Old, formal methods of review are simply impractical to implement for 
100% of your code (or any percent, as some would argue). Tool-assisted 
lightweight code review provides the most “bang for the buck,” offering both an 
efficient and effective method to locate defects – without requiring painstaking 
tasks that developers hate to do. With the right tools and best-practices, your 
team can peer-review all of its code, and find costly bugs before your software 
reaches even QA – so your customers get top-quality products every time! 

 
 
More details on these best practices, the case study, and other topics are 
chronicled in Jason Cohen’s book, Best Kept Secrets for Peer Code Review, currently 

available FREE at www.CodeReviewBook.com.  For information on Smart Bear 

Software’s Code Collaborator code review tool, please contact us! 
 

Figure 5: Best Kept Secrets of Peer 
Code Review – the only book to 
address lightweight code review. 
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