
Lightweight Code Review Episode 4:  The Largest Case Study of Code Review, Ever Page 1 of 8

Lightweight Code Review Episode 4:
 The Largest Case Study of Code Review, Ever

 In Episode 3 we discussed several types of code review.  In this Episode we give the

results of the largest-ever case study on peer review.  

Forget theory -- what's it really like?

The ACM and IEEE archives are replete with papers on code review and inspection.  But

after a casual perusal you notice that most studies are done with fewer than 50 reviews,

usually in a university setting with students and contrived code samples.

That's fine for academics, but what's it like in the real world? With real software

developers (ranging from junior to senior) and real software projects with 1000's of files

and real deadlines? 

2500 reviews.  50 developers.  Real software

In May 2006 we wrapped up the largest case study of peer code review ever published,

done at Cisco Systems&reg;.  The software was MeetingPlace&reg; -- Cisco's

computer-based audio and video teleconferencing solution.  Over 10 months, 50

developers on three continents reviewed every code change before it was checked into

version control.  

We collected data from 2500 reviews of a total of 3.2 million lines of code.  This article

summarizes our findings.  

How reviews were conducted

The reviews were conducted using Smart Bear Software's Code Collaborator system for

tool-assisted peer review.  This article is not intended to be a sales pitch for Collaborator,

so please see the website for product details.  

By Jason Cohen (jason.cohen@smartbearsoftware.com) © 2003-6 Smart Bear Software

http://articles.smartbearsoftware.com/Four-Kinds-Of-Review
http://codecollaborator.com
mailto:jason.cohen@smartbearsoftware.com
http://smartbearsoftware.com


Lightweight Code Review Episode 4:  The Largest Case Study of Code Review, Ever Page 2 of 8

Cisco wanted to review all changes before they were checked into the version control

server, which in their case was Perforce&reg;.  They used a Perforce server-side trigger

(part of Code Collaborator) to enforce this rule.  

Developers were provided with several Code Collaborator tools which allowed them to

upload local changes from a command-line, from a Windows GUI application, and within

the Perforce GUI applications P4Win and P4V.  

Reviews were performed using Code Collaborator's web-based user interface: 

The Code Collaborator software displayed before/after side-by-side views of the source

code under inspection with differences highlighted in color.  Everyone could comment by

clicking on a line of code and typing.  As shown above, conversations and defects are

threaded by file and line number.  

Defects were logged like comments but tracked separately by the system for later

reporting and to create a defect log automatically.  Cisco configured the system to collect

severity and type data for each defect.  

If defects were found, the author would have to fix the problems and re-upload the files for

verification.  Only when all reviewers agreed that no more defects existed (and previously

found defects were fixed) would be review be complete and the author allowed to check in

the changes.  

By Jason Cohen (jason.cohen@smartbearsoftware.com) © 2003-6 Smart Bear Software

mailto:jason.cohen@smartbearsoftware.com
http://smartbearsoftware.com


Lightweight Code Review Episode 4:  The Largest Case Study of Code Review, Ever Page 3 of 8

Code Collaborator collected process metrics automatically.  Number of lines of code,

amount of person-hours spent in the review, and number of defects found were all

recorded by the tool (no stopwatch required).  Reports were created internally for the

group and used externally by Smart Bear to produce the analysis for the case study.  

Jumping to the end of the story

The reader will no doubt find it disturbing that, after setting up the parameters for the

experiment, we suddenly present conclusions without explanation of statistical methods,

the handling of experimental control issues, identifying "defects" that weren't logged as

such, and so forth.  

The length of this article prevents a proper treatment of the data.  The patient reader is

referred to Chapter 5 of Best Kept Secrets of Peer Code Review for a detailed account.  

Conclusion #1: Don't review too much code at once (&lt;200-400 LOC)

As the chart below indicates, defect density decreased dramatically when the number of

lines of code under inspection went above 200: 

By "defect density" we mean the number of defects found per amount of code, typically

per 1000 lines of code as shown on this graph.  Typically you expect at least 50 defects per

kLOC for new code, perhaps 20-30 for mature code.  Of course these types of "rules" are

By Jason Cohen (jason.cohen@smartbearsoftware.com) © 2003-6 Smart Bear Software

http://codereviewbook.com
mailto:jason.cohen@smartbearsoftware.com
http://smartbearsoftware.com


Lightweight Code Review Episode 4:  The Largest Case Study of Code Review, Ever Page 4 of 8

easily invalidated depending on the language, the type of development, the goals of the

software, and so forth.  A future article will discuss the interpretation of such metrics in

more detail.  

In this case, think of defect density as a measure of "review effectiveness." Here's an

example to see how this works.  Say there are two reviewers looking at the same code. 

Reviewer #1 finds more defects than reviewer #2.  We could say that reviewer #1 was

"more effective" than reviewer #2, and the number of defects found is a decent measure of

exactly how effective.  To apply this logic across different reviews you need to normalize

the "number of defects" in some way -- you'd naturally expect to find many more defects

in 1000 lines of code than in 100.  

So this chart tells us that as we put more and more code in front of a reviewer, her

effectiveness at finding defects drops.  This is sensible -- the reviewer doesn't want to

spend weeks doing the review, so inevitably she won't do as good a job on each file.  

This conclusion may seem obvious, but this data shows exactly where the boundary is

between "OK" and "too much." 200 LOC is a good limit; 400 is the absolute maximum.  

Conclusion #2: Take your time (&lt;500 LOC/hour)

This time we compare defect density with how fast the reviewer went through the code.  

By Jason Cohen (jason.cohen@smartbearsoftware.com) © 2003-6 Smart Bear Software

mailto:jason.cohen@smartbearsoftware.com
http://smartbearsoftware.com


Lightweight Code Review Episode 4:  The Largest Case Study of Code Review, Ever Page 5 of 8

Again, the general result is not surprising: If you don't spend enough time on the review,

you won't find many defects.  

The interesting part is answering the question "How fast is too fast?" The answer is that

400-500 LOC/hour is about as fast as anyone should go.  And at rates above 1000

LOC/hour, you can probably conclude that the reviewer isn't actually looking at the code

at all.  

Conclusion #3: Spend less than 60 minutes reviewing

Let's combine the two previous conclusions.  If we shouldn't review more than 400 LOC at

once, and if we shouldn't review faster than 400 LOC per hour, then we shouldn't review

for more than one hour at a time.  

This conclusion is well-supported not only by our own evidence but that from many other

studies.  In fact, it's generally known that when people engage in any activity requiring

concentrated effort, performance starts dropping off after 60-90 minutes.  

Space does not permit us to delve into this fascinating subject, but this (correct) conclusion

derived from the other data helps to support the credibility of the entire study.  

By Jason Cohen (jason.cohen@smartbearsoftware.com) © 2003-6 Smart Bear Software

mailto:jason.cohen@smartbearsoftware.com
http://smartbearsoftware.com


Lightweight Code Review Episode 4:  The Largest Case Study of Code Review, Ever Page 6 of 8

Conclusion #4: Author preparation results in more efficient reviews

"Author preparation" is a term we invented to describe a certain behavior pattern we saw

during the study.  The results of this behavior were completely unexpected and, as far as

we know, have not been studied before.  

"Author preparation" is when the author of the code under review annotates his code with

his own commentary before the official review begins.  These are not comments in the

code, but rather comments given to other reviewers.  About 15% of the reviews in this

study exhibited this behavior.  

The striking effect of this behavior is shown in this chart  showing the effect of author

preparation on defect density: 

Reviews with author preparation have barely any defects compared to  reviews without

author preparation.

By Jason Cohen (jason.cohen@smartbearsoftware.com) © 2003-6 Smart Bear Software

mailto:jason.cohen@smartbearsoftware.com
http://smartbearsoftware.com


Lightweight Code Review Episode 4:  The Largest Case Study of Code Review, Ever Page 7 of 8

Before drawing any conclusions, however, consider that there  are at least two

diametrically opposite ways of interpreting this data.  

The optimistic interpretation is: During author preparation the author is retracing his steps

and explaining himself to a peer.  During this process the author will often find defects all

by himself.  This "self review" results in fixes even before other reviewers get to the table. 

So the reason we find few defects in author-prepared reviews is that the author has already

found them! Terrific! 

The pessimistic interpretation is: When the author makes commentary the reviewer

becomes biased.  If the author says "Here's where I call foo()," the reviewer simply

verifies that indeed the author called foo() but doesn't ask the deeper questions like

"Should we even be calling foo()?" The review becomes a matching game instead of a

thoughtful exercise.  So the reason we find few defects in author-prepared reviews is that

the reviewers have switched off their minds! Terrible! 

We resolved this by taking a random sample of 300 reviews that contained author

preparation.  We examined each one looking for evidence to support one hypothesis or the

other.  

Our findings were clearly in favor of the optimistic interpretation.  There were many cases

where reviewers argued with the preparatory comments and where reviewers clearly were

looking at other parts of the code and thinking about ramifications elsewhere in the code

base.  

So, our conclusion is that author preparation is indeed a Good Thing and that it saves time

overall during the review because reviewers are not having to call out "obvious" defects.  

Results in summary

To summarize all our results, including some things not discussed here: 

Lightweight-style reviews are effective and efficient

By Jason Cohen (jason.cohen@smartbearsoftware.com) © 2003-6 Smart Bear Software

mailto:jason.cohen@smartbearsoftware.com
http://smartbearsoftware.com


Lightweight Code Review Episode 4:  The Largest Case Study of Code Review, Ever Page 8 of 8

Review fewer than 200-400 LOC at a time

Aim for an inspection rate of less than 300-500 LOC/hour

Take enough time for a proper, slow review, but not more than 60-90

minutes

Author preparation is good

Expect defect rates around 15/hour, higher only when &lt;150 LOC under

review

Left to their own devices, reviewers' inspection rates will vary widely, even

with similar authors, reviewers, files, and review size

For a full explanation and evidence for all these results, refer to Best Kept Secrets of Peer

Code Review.  

What's Next: In the next few articles we'll explore often overlooked aspects of review such

as dealing with the social ramifications of personal critiques and what metrics really tell

us.  

 Cisco&reg; and MeetingPlace&reg; are registered trademarks of Cisco Systems Inc.. 

These names and the information herein are reproduced with permission.  

By Jason Cohen (jason.cohen@smartbearsoftware.com) © 2003-6 Smart Bear Software

http://codereviewbook.com
http://codereviewbook.com
http://articles.smartbearsoftware.com/Team-Building
mailto:jason.cohen@smartbearsoftware.com
http://smartbearsoftware.com

	 The Largest Case Study of Code Review, Ever
	Forget theory -- what's it really like?
	2500 reviews.  50 developers.  Real software
	How reviews were conducted
	Jumping to the end of the story
	Conclusion #1: Don't review too much code at once (&lt;200-400 LOC)
	Conclusion #2: Take your time (&lt;500 LOC/hour)
	Conclusion #3: Spend less than 60 minutes reviewing
	Conclusion #4: Author preparation results in more efficient reviews
	Results in summary


