Articles

1 of 4

http://www.informit.com/articles/printerfriendly.asp?p=379759

informit

Should We Be Doing More Unit Testing?
Date: Jun 3, 2005 By Michael Kelly.

Quick feedback. More testable code. Finding serious problems early. What's not to like?
Michael Kelly pleads the case for unit testing.

While test-driven development and test-first programming seem to be huge in the agile
community, they're hard to come by in my local community. I'm the unhappy (and
sometimes unknowing) observer in a geographic community that appears to be doing very
little unit testing indeed. This is problematic for me and others in my community because we
want to generate more excitement and understanding about the practice of automated unit
testing. And we don't think we're alone in our suffering; we believe that there are others out
there who don't know about unit testing (mostly in the automated test-driven sense of the
practice). This article is an attempt to shed some light on why we create unit tests and how
they can help.

How Unit Tests Help Developers

Developers might want to automate unit tests for many reasons. These are the most
common reasons:

Unit tests can provide quick feedback to the developer.

Unit tests can simplify the structure of the system.

Unit tests can mitigate concerns about the effects of refactoring.
Unit tests can be used to validate code integration.

Unit tests may result in more testable code.

Unit tests can document the code they test.

Unit tests are typically inexpensive to run and maintain.

Unit tests report serious problems early.

Providing Quick Feedback

The sooner developers receive feedback on their code, the sooner they can implement
changes based on that feedback. Feedback can be as simple as an error or as complex as
having to refactor the code because it's just too difficult to develop a comprehensive test for
it. An automated unit test provides feedback to the developer before other test systems
exist for the code. This feedback is provided in the environment closest to the developer,
making it less expensive to fix any errors found. As we all know, errors found by the
developer who's writing the code are less expensive to fix than those found and recorded by
a tester. The time needed to record, process, and track the error becomes overhead on the
project.

Simplifying System Structure

There is an increasing belief that a properly structured system is easy to unit test. A
desirable unit test that's difficult to implement is seen as a sign that the system needs
improving. As discussed earlier, this immediate feedback is valuable to the developer.
Often, developing unit tests will help to focus and clarify thoughts on the code being
developed, by forcing issues and ambiguities to the surface before implementation and
release. In general, a simpler system is cheaper to maintain and allows developers new to
the project to come up to speed more quickly.

Mitigating Refactoring Concerns

Unit tests are typically written at the time of the highest flux and least reliability in the code.
By providing quick feedback and reducing system complexity, developers who use unit tests
can work confidently during times of flux and make changes with confidence, knowing that
any omissions or new errors introduced should be caught by their suite of unit tests. In my
experience, developers who have a suite of unit tests for their code introduce fewer errors
during project crunch times, when people are working long hours and requirements are
changing daily. It's easy for the test team to identify those individuals who developed and

1/2/2006 2:51 PM

Articles http://www.informit.com/articles/printerfriendly.asp?p=379759

maintained unit tests throughout the project.

Validating Code Integration

Unit tests can be reused during code integration to ensure that changes in other developers'
code don't adversely affect the code tested via the unit test: "If it worked before, it should
work now." While typically not a complete test of integration, a complete test of all the parts
of a whole is the logical first step in testing the whole. In many agile development groups,
unit tests are executed against every build of the software (which can happen several times
a day). It's a big deal if a unit test fails, and tremendous effort is put into fixing the build
before "regular" work continues. The unit tests for the project are the first line of defense
against bad software; by getting feedback so quickly, project teams can more easily identify
which changes caused the tests to fail.

Producing More Testable Code

In the process of developing unit tests, developers may be required to build in test
harnesses, logging and debug utilities, and APIs to exercise functionality in isolation.
Usually, this functionality can be used downstream in the testing process during integration
testing, system testing, regression testing, performance testing, and user acceptance
testing. In some of my projects, we've used both log files (developed for unit testing) and
application APIs (also developed for unit testing) while developing our automated test
scripts. This practice not only allowed us to test faster (due to faster-executing regression
scripts), but also to test better. We were able to read the logs at runtime to see whether
errors were occurring that we weren't seeing at the GUI level of the application.

Documenting Tested Code

Unit tests can be used as a form of executable documentation for the code they test. These
tests provide substantial value for programmers doing maintenance—both for programmers
trying to understand their own code at a later date, and when looking at someone else's
code. The simplicity of a unit test clarifies the intent and the expectations of the code.

In addition, if you're attempting to figure out how to use a specific piece of code, sometimes
it's helpful to look at the unit tests for that code to see how they exercise the code. | use this
approach when developing Watir scripts, for example. Watir is a free open-source
functional testing library for developing automated tests for web applications. Because the
tool is constantly under development and new features are added almost daily, it's
unrealistic to expect the documentation to remain up to date with the code. To learn how to
use a new feature, | often look at the unit tests that were checked in with the feature.

Reducing Testing Costs

Relative to all the other types of testing, unit tests are inexpensive to create, maintain, and
run. Tools are typically free or included in the enterprise IDE being utilized, resulting in no
additional tool investment. Unit tests are typically coded in the same language as the code
they test, which saves on the additional costs associated with maintaining a specific
language skill set. Unit tests are typically simple enough that no extra documentation is
necessary for their longevity, unlike all other types of tests (with the exception of exploratory
testing).

This is not to say that there is no cost to unit testing—just that it's significantly cheaper than
the other types of testing traditionally associated with software development.

Reporting Serious Problems Early

For a good many unit tests, failure would indicate a very serious problem. Unlike system
tests, which can involve subjectivity and ambiguity, unit tests typically focus on technology
issues and coding errors. An error that might be missed as a consequence of failing to unit
test (or because of poor unit testing) typically will manifest itself as a high-priority and
high-severity problem when encountered in system testing. Unit tests usually won't reveal
cosmetic errors that can be postponed to a later release; more often than not, they uncover
problems that cause runtime exceptions, crashes, loss of data, and other exciting issues
that testers everywhere salivate to find.

How Unit Tests Provide Overall Value

Aside from their immediate value to developers, as previously discussed, unit tests also

2 of 4 1/2/2006 2:51 PM

Articles http://www.informit.com/articles/printerfriendly.asp?p=379759

provide value to the overall testing process:

e Unit tests create a test harness that can be leveraged for other types of testing.

¢ Unit tests can reduce the overall scope (coverage analysis and risk analysis) of
other types of testing.

e Good unit tests remove the necessity for in-depth domain testing and in-depth
boundary value analysis.

Creating a Test Harness

| mentioned earlier that unit tests and unit test harnesses can be leveraged elsewhere.
Here's are some examples:

e Unit tests can be repurposed to address risks that may not have been envisioned
when the tests were written.

e Unit tests can be used as a starting point for APIs used for test automation. They
can be used to seed a suite of automated tests.

e Logs developed for unit testing can be leveraged throughout the test lifecycle.

e Test data that's developed or identified can be leveraged throughout the test effort.

All of these uses potentially lower the cost of testing throughout the project.

Reducing Scope for Other Types of Testing

Unit tests can reduce the overall scope (coverage analysis and risk analysis) of other types
of testing. For example, system tests can be designed by reviewing the existing unit
tests—in some cases, tapping into interfaces that developers had written for their own
tests—and can focus on efforts that developers didn't address. System testers should take
advantage of unit tests and design their own tests to mitigate risks not already addressed by
the unit tests. For example, if you're concerned with code coverage, as many teams are (we
won't go into the validity of those concerns), you can run your unit tests using a
code-coverage tool and then develop system tests to exercise the code that hasn't already
been executed. If you have concerns about specific high-risk features, such as integration
with a third-party web service, you can develop system tests that complement the testing
already performed at the unit level, instead of duplicating that testing.

Reducing the Necessity for Other Processes

Good unit tests remove the necessity for in-depth domain testing and in-depth boundary
value analysis. | stole these two concepts from the mind of Cem Kaner. As a tester, | find
them extremely valuable. With the exception of a quick sampling to verify that the right
testing was done at the unit level, domain testing or testing at the boundaries for individual
components might be omitted entirely, or at the very least drastically reduced. These
classes of testing might still be needed at the application's system level, but the trivial cases
could be executed up front during unit testing.

This seems to be an excellent place for developers and testers to collaborate. Many
developers could benefit from a better understanding of domain and boundary value
analysis, but because it's typically outside of their direct focus (get the code working), they
may not be aware of these techniques. Testers can help by supplying this knowledge and/or
generating the data for the tests. Specialized tools help to facilitate these discussions and
activities.

Getting Started with Unit Testing

At this point, you might be thinking, "All of this sounds good, but how do | get started?" Well,
I'm glad you asked! The following is a short (but powerful) list of places where you can go
for more information on the topic of unit testing. If I've sparked an interest in developing
automated unit tests, these resources will actually address the implementation of those
tests. Good luck!

For an overview of test-driven development using unit tests, | suggest grabbing a copy of
Kent Beck's Test-Driven Development: By Example (Addison-Wesley, 2002, ISBN
0321146530). This is an excellent book with examples that even an admittedly junior
developer like me can follow.

If you just need access to a unit test framework for your development language, check the
Cunningham & Cunningham wiki. This site has a wonderful amount of information on the
topic and maybe the most comprehensive list of links to the different frameworks.

3 of4 1/2/2006 2:51 PM

Articles

4 of 4

http://www.informit.com/articles/printerfriendly.asp?p=379759

If you're a community-minded individual, check out TestDriven.com. Here you'll find articles,
blog feeds, forums, and downloads related to everything that's remotely associated with unit
testing. This is an excellent site that | visit almost daily.

NOTE

Many of the ideas presented in this article originated from the work and thoughts of people
smarter than me—specifically Kent Beck, James Bach, Brian Marick, Cem Kaner, Jonathan
Kohl, Bret Pettichord, Rex Black, and Dave Liebreich—to which I've added my own
thoughts and experiences. In addition, this article was written using the notes from a
meeting of the Indianapolis Workshop on Software Testing, held in March 2005 on the topic
of "Unit Testing." Participants in the workshop included Dana Spears, Michael Kelly, Joshua
Rafferty, Cheryl Westrick, Chad Campbell, Jason Halla, and Allen Stoker.

Michael Kelly is a senior consultant for Fusion Alliance, with experience in software
development and testing. Mike is currently serving as the program director for the
Indianapolis Quality Assurance Association and the membership chair for the Association
for Software Testing. You can reach Mike by email at Mike@MichaelDKelly.com.

© 2005 Pearson Education, Inc. InformIT. All rights reserved.
800 East 96th Street Indianapolis, Indiana 46240

1/2/2006 2:51 PM

