
January 2006 $9.95 www.StickyMinds.com

BULKING UP
Strengthening Your

Soft Skills
PAGE 16

ARE WE THERE YET?
Creating Project

Dashboards to Display
Project Progress

PAGE 22

The Print Companion to

with

Character B Y T O D G O L D I N G

PAGE 30

Code

Better Software and StickyMinds.com
We invite you to visit StickyMinds.com, the online companion to Better Software magazine. StickyMinds.com covers the same pertinent topics
as the magazine, putting the power of information at the click of your mouse. Weekly columns, headline-making bugs, hundreds of technical
papers, an online Tools Guide, discussion boards, and so much more make this your site for 24/7 brainfood to help you build better software.

“As a tester you are an
anomaly. The project’s end
product is a working
software system, which
most of the project team
members are devoting all
their efforts to building.
Then you come along and
expose the flaws.”
FIONA CHARLES
PAGE 16

January 2006
Volume 8, Issue 1

www.StickyMinds.com JANUARY 2006 BETTER SOFTWARE 3

22

“Remember, it’s not just the cost per
defect; it’s the cost per defect times the
total number of defects. If you’re not
looking at the overall cost, you can’t
know where to spend your time.”

Better Software—The print companion to StickyMinds.com brings you
the hands-on, knowledge-building information you need to run smarter
projects and deliver better products that win in the marketplace and
positively affect the bottom line.

Subscribe today to get eleven issues per year plus an Annual Tools Guide.

Visit www.BetterSoftware.com or call 800-450-7854.

Features
BULKING UP 16
How can strengthening people skills, such as teamwork and communication,
help shape you into a top-form tester? by Fiona Charles

Get a Game Plan 18

Tips for Difficult Conversations 19

ARE WE THERE YET? 22
Create project dashboards to display project progress and drive your team to success.
by Johanna Rothman

Cover Story
CODE WITH CHARACTER 30
Use .Net generics to get to know your data types and form more meaningful,
trusting, typesafe relationships with them. by Tod Golding

TECHNICALLY SPEAKING 8
Put a Tough Decision in Its Place
Tell your manager where to go—for a decision, of course. by Mike Cohn

TEST CONNECTION 10
Support for Testing,Testing for Support

Where supportability and testability fit in the Quality Criteria dimension of the
Heuristic Test Strategy Model. by Michael Bolton

MANAGEMENT CHRONICLES 12
Say It ...Don’t Stew in It

Managers aren't mind readers. Translate vague grievances into concrete
recommendations for generating change in your workplace. by Naomi Karten

CAREER DEVELOPMENT 36
A Look at Employment Trends in 2005

Better Software magazine and StickyMinds.com offer up readers' responses to
our annual salary survey. by Heather Shanholtzer

THE LAST WORD 44
Working with Dull Knives

Why “sharp” tools are needed in almost every organization. by Clarke Ching

In Every Issue
From the Editors 6

What’s Happening @ StickyMinds.com 14

Product Announcements 41

Ad Index 43

Mark Your Calendar 43

Featured Department

TOOL LOOK 39
A Look at Administrator’s Pak by Winternals

Find out more about this suite of utilities that
allows testers to repair locked-out systems, restore
lost data, remove malware, and much more.
by Marnie Hutcheson

“There are some issues that
should be passed down
the organization. This is
the basis of empowerment.
There is a fine line, however,
between empowerment
and shirking our own
responsibilities.”
MIKE COHN
PAGE 8

Columns and Departments

4 BETTER SOFTWARE JANUARY 2006 www.StickyMinds.com

“For some reason, our employers
and clients are content to pay us
our high salaries but they give us
dull knives with which to work.”

44

8

6 BETTER SOFTWARE JANUARY 2006 www.StickyMinds.com

Thanks to everyone who attended the recent

STARWEST conference in Anaheim, California. It

was our pleasure to have the opportunity to meet

so many Better Software magazine readers and

StickyMinds.com users.

If you didn't make it out to STARWEST this year,

don’t miss us on the East Coast. Log on to

www.StickyMinds.com to find out how you can

register for STAREAST 2006, May 15-19, in

Orlando, Florida.

Here's what some of you had to say about

STARWEST 2005. As always, we love the feedback.

“For anyone serious about software testing best

practices, STARWEST is the place to be—experts coming

together with the testing community to share a wealth

of ideas!”

Kenneth Hass

“STARWEST is the best conference so far. It opens up new

niches for ideas and opportunities to explore and create

new concepts in software testing.”

Mark Garnett

“I'm glad I came. I have learned a lot and I am excited

about going back to implement some of these

techniques.”

Belva Porter

“This is my second time at STARWEST—very impressive

and informative. I recommend to all. It's a learning

experience you'll never forget, and you'll always find

new ideas to use and apply.”

Laura Greer

“The conference has been great. I have many new

techniques to make testing more efficient and better

with less effort.”

Lynne Register

From the Editors
Publisher
Wayne Middleton

Director of Publishing
Holly N. Bourquin

Editorial

Editor
Heather Shanholtzer

StickyMinds.com Managing Editor
Francesca Matteu

Assistant Editor
Joseph McAllister

Copy Editor
Dayna Spear

Managing Technical Editor
Lee Copeland

Technical Editors
Mike Cohn, Brian Marick

Design

Creative Director
David Parrish

Art Director
Sarah Rice

Advertising

Sales Director
Alison Wade

Sales Executive
Shae Young

Administrative Manager
Heather Buckman

Sales Assistant
Ellen Mahoney

Production Coordinator
Julie Morgenstern

Circulation and Marketing

Circulation and Marketing Manager
Sommer Farrin

A PUBLICATION OF SOFTWARE QUALITY ENGINEERING

CONTACT US
Editors: editors@bettersoftware.com
Subscriber Services: info@bettersoftware.com
Phone: (904) 278-0524, (888) 268-8770
Fax: (904) 278-4380
Address: Better Software, SQE, Inc.
330 Corporate Way, Suite 300
Orange Park, FL 32073

We Take Our Mistakes Seriously

Due to an editor’s error, incorrectly formatted tables appear
on pages 28 and 29 of the November/December feature article

“Brushing Up on Functional Testing.”

Please visit http://www.stickyminds.com/brushingup
to view the corrected listings and read the article in its entirety.

8 BETTER SOFTWARE JANUARY 2006 www.StickyMinds.com

Technically Speaking

Put a Tough Decision in Its Place
by Mike Cohn

In a recent discussion with a project
sponsor, I asked whether it was more
important to deliver on schedule or to
deliver all of the desired features. The
sponsor’s answer was “Both.” She
refused to clarify for her team the relative
importance of scope, schedule, resources,
and quality on that project. She was insistent
that all features be delivered on time,
with no loss of quality, and without going
over budget by increasing the team size.

I was gradually able to help her
understand that this puts the team in an
impossible position. I told her that every
time a programmer passes a module to
testing, he has made a tradeoff decision
between scope, schedule, and quality.
He has made a micro-level decision that
the code is good enough, and that
further improvements in quality are not
justified by their cost in either a longer
schedule or in delivering fewer features.
I told her that these types of decisions
are made dozens of times each day by
all team members. And here’s the
kicker—I told her that, without guidance
from her, these micro-level decisions were
being made inconsistently. At that point,
I was able to get her to prioritize scope,
schedule, resources, and quality against
one another.

This particular project sponsor was
doing something I see happen much too
frequently—she was pushing a difficult
decision down the organization. If we
cannot make a particularly difficult
decision, what we should do instead
is push the decision up—not down—
the organization.

Multitasking, which I’ve written about
in a previous column (see the July/August
2005 issue of Better Software magazine),
is another example of inappropriately
pushing a decision down the organization.
The manager who assigns a tester to be on
three projects is saying, “I can’t decide
which is the most important project for
you to work on, so I’ll make you decide.”
If the manager, who presumably knows
more about the relative priorities of the
projects, cannot decide how this tester

employee,” would she agree? If I told
my employee, “I can’t make that
decision; let me run it by my boss,”
would he agree?

Next time you are tempted to pass a
difficult decision down the organization,
stop and ask yourself these three
questions. Similarly, next time a decision
is inappropriately passed to you, see if
you can get your boss to push the issue
up instead of down. {end}

Mike Cohn is the founder of Mountain
Goat Software, a process and project
management consultancy that specializes
in helping companies adopt and improve
their use of Agile processes and techniques.
He is the author of Agile Estimating and
Planning and User Stories Applied for
Agile Software Development. Mike is a
founding member of the Agile Alliance
and serves on its board of directors. He
is a technical editor for Better Software
magazine, a regular columnist for the
magazine and StickyMinds.com, and a
frequent presenter at STAR and Better
Software conferences. He can be reached
at mike@mountaingoatsoftware.com.

should spend her time, how can she
reasonably expect the tester to decide?

Of course, there are some issues that
should be passed down the organization.
This is the basis of empowerment. There is
a fine line, however, between empowerment
and shirking our own responsibilities. Here
are three questions I use to help decide
whether a decision should remain with me,
be pushed up, or be pushed down:

• Who has the appropriate knowledge
to make this decision? Before passing
a decision down, be sure that the
employee has or can get all the nec-
essary information to make an
appropriate decision. If you pass it
up, make sure your boss is in touch
with the necessary day-to-day details.

• Who owns the risk of a bad decision?
Is it my boss, my employee, or me? In
the product sponsor’s case, the risk of
choosing incorrectly between scope,
schedule, resources, and quality was
hers. She needed to own that decision.

• What would my boss or my employee
think of my pushing the decision to
the other person? If I told my boss, “I
just delegated this decision to my

Technical Editor Mike Cohn

B
R

IA
N

 P
A

Y
N

E
/R

E
D

U
X

 P
L

U
S

In the last issue, I introduced the first
part of the Quality Criteria dimension of
James Bach’s Heuristic Test Strategy
Model. People often refer to these quality
attributes as “the -ilities,” properties of
the product that customers might find
desirable: capability, reliability (which
under the HTSM includes security),
usability, scalability, performance,
installability, and compatibility.

The second part of the Quality
Criteria list focuses on development, or
producer-facing attributes. The HTSM
identifies supportability, testability,
maintenance, portability, and localizability.
The first two of these attributes are so
important that I’m going to dedicate this
entire column to them.

Rapid Testers use Jerry Weinberg’s
definition of quality: “Quality is value to
some person.” The end-user is just one
member of the project community whose
values matter. We also attempt to
produce value and reduce cost for the
organization that is developing the
software. We think about supportability
and testability to remind us to look for
problems that have a real impact on
support people and the testers themselves;
they are also customers of the testing
effort. Both groups can and should ask
for supportability and testability.

In the early ‘90s, I worked for a
company called Quarterdeck. Its flagship
products were DESQview and QEMM-
386, multitasking and memory-
management utilities for DOS running
on Intel-based personal computers. The
PC environment in those days was a
mishmash of mostly compatible
hardware, but because our products
worked so closely to the metal, they were
more vulnerable to compatibility
problems than most other products.

I worked in technical support,
then testing, and later in program
management. Those departments were
closely linked—everyone used the products

number so they can call you directly if they
see a problem in the product. Some support
staff may aspire to become testers, in which
case you have a farm team in-house.

A support person will be the first to
tell you that coherent and consistent
error messages make a big difference to a
program’s supportability. Testers should
try to trigger all kinds of exceptional
conditions while testing. We do that
primarily to expose risk; unforeseen
conditions that the program doesn’t
handle put the program in an unpredictable
state. But even if we don’t find bugs, we
look closely at each error message and
other feedback supplied by the program.
Does the message clearly and accurately
describe what’s going on? Does it help
the end-user solve the problem—or if
that’s not feasible, would the message
assist support staff or developers? Does
the error message uniquely identify the
point of failure in the program? If the
problem is a missing file or resource,
does the error message specifically identify
what’s missing? A support person will
identify a problematic error message for
you right away (“A .DLL could not be
found.”—OK, but which .DLL?).

in his daily work, so everyone tested to
some degree. Ever since then I’ve been
aware that good technical support people
are natural allies for testers and can be
highly valuable to the testing effort.
They’re experts with the product, they’re
direct conduits to the customers, and
they’re keenly aware of the kinds of
problems that make telephones ring and
support forums choke. As testers, we
want to prevent those things. We reduce
cost and add value when we find
bugs or anything else that would cause
problems in the field or extra work
for the support staff.

Cultivate relationships with your
support people. They can help you
understand what supportability means in
your context and what’s important to
customers. Support people may identify
risks that you may not have considered,
and they can help estimate the cost and
impact of a bug. Most of them will be
delighted to help you find problems and
will advocate specific bug fixes. Support
people may have access to tools, tricks, or
tips that testers can use. Swap useful
documents, diagrams, or scripts. Make
sure that the support people have your

10 BETTER SOFTWARE JANUARY 2006 www.StickyMinds.com

Test Connection

Support for Testing,
Testing for Support
by Michael Bolton

G
et

ty
 Im

ag
es

Test Connection

www.StickyMinds.com JANUARY 2006 BETTER SOFTWARE 11

Many of the attributes that add to a
product’s supportability also add to its
testability. By testability, Rapid Testers
primarily mean visibility and controllability.
We evaluate the program based on the
means it provides for service people to
support it, testers to test it, and developers
to debug it. Does the program produce log
files? Can we configure logging to provide
varying levels of detail? Are the logs
consistently structured? Can they be
scanned quickly and easily, either by a
human or by a program written in a
scripting language? Is each event that is
recorded in the file precisely time stamped

and well structured so we can write scripts
that parse, filter, and summarize? Log files
are a feature of the product—are we testing
and evaluating them, or are we taking them
for granted and thereby possibly missing
bugs? What other reports does the
program produce? Is there information in
them that might help in the testing or
support effort? What information is
missing that we would like to be able to
see? Can we query the program on the fly?

We’d like to be able to automate
certain functions of the program or
our interaction with it, so we ask for
controllability—scriptable interfaces,
typically using languages like Perl,
Python, or Ruby, to reduce the need for
expensive front-end tools. When the
program provides a means to control it,
we can use automation to operate the
program, to set up data and manipulate
it, to probe the state of the product, or
to install and configure it. Programs
that can be controlled remotely might
add to testability and to supportability
if they can reveal useful information.
The emphasis is on doing things
efficiently—getting the machine
to do the work—which leaves us more
time for critical thinking, observation,
and evaluation.

Note that when Rapid Testers talk
about testability, they’re referring to
visibility and controllability of a
program. In some places, “testability”
has another meaning; it is sometimes
equated with “falsifiability,” or

“decidability,” which is the ability to
make a true-or-false or yes-or-no statement
about the program. That’s a valuable
notion, but there are two pitfalls to avoid.
The first is that a falsifiable statement
may not tell the whole story of an
observation we could make. The
statement might be too vague to be
testable. For example, “The application
shall exhibit responsiveness.” Conversely,
it might be precise in a way that may not
really matter to anyone. For example, if
an application, as specified, must return
a result within one second, give or take
five milliseconds, does that difference

matter? It might, but if not, we could be
tempted to create overly precise tests that
distract us from more important things in
the mission.

The second pitfall is that jargon
words like “testability,” “stress testing,”
or “functional testing” may take
on different meanings in different
organizations. Someone who claims that
a program is testable (meaning falsifiable)
may not understand when we assert that
the program is not testable (meaning
visible or controllable). We can choose
to use whatever words are culturally
feasible to ask for visibility and
controllability, as long as we clearly
express that we need them. Moreover, if
we consider both possible meanings of
testability, we spark our imaginations to
create more diverse tests.

To get visibility and controllability, we
may need to recruit developers to our
cause, but there’s something in it for
them, too. The developers themselves
benefit because a more testable program
is almost always easier to debug. They may
appreciate that, when a program is more
testable, we testers need less time to
achieve the same amount of test coverage,
or we can achieve more coverage in the
same amount of time. Either way, we have
a better shot at discovering some problem
that threatens the value of the product.

Testability fosters collaboration. At
Quarterdeck, memory management and
multitasking were tricky to understand
and diagnose. To resolve problems and

test the product, the development,
support, and testing teams needed access
to information about the system,
DESQview, and QEMM, so the developers
wrote a program called Manifest and
included it in the package. They continued
to refine the product based on ideas from
support staff, testers, and customers.

Manifest added a lot of value by
making invisible things visible. It
allowed our support staff and testers to
be more productive by allowing them to
troubleshoot problems quickly. Manifest
had easily understandable maps of
memory that showed which program or

device was using which addresses, so
finding and resolving conflicts was a
breeze. Manifest collected all of the
relevant system information in simple
tables that were easy to navigate, clearly
presented, informative, and able to be
printed, mailed, or faxed. Some cus-
tomers and vendors came to use Mani-
fest as a general troubleshooting tool.
For other customers, the DESQview and
QEMM packages were more valuable
than their competitors, at least partly
because they were better tested and
more supportable. Did that make a
difference? Well, for some time, QEMM
was consistently the best-selling PC
software package in the world. Testabil-
ity and supportability count. {end}

Michael Bolton lives in Toronto and
teaches heuristics and exploratory testing
in Canada, the United States, and other
countries as part of James Bach’s Rapid
Software Testing course. He is program
chair for the Toronto Association of
System and Software Quality and is
a regular columnist for Better Software
magazine. You can contact Michael at
mb@developsense.com.

Don’t Stop Now!
Log on to StickyMinds.com and join
Michael Bolton and your peers in a

conversation about this topic. At the end of
the digital column, add your views or just

read what others have to say.

To get visibility and controllability,
we may need to recruit developers to our cause.

“We don’t like being treated like robots,”
said Syd with a sigh.

Chris jumped right in. “Right, we’re
doing good work, but it’s like we’re on
an assembly line. We finish one project
and plunk—there’s the next one. Why
are managers so clueless? Even Kent. He
may be a senior VP, but even he doesn’t
seem to get that we’re not machines!”

“I hear you,” said Lynn, their manager.
“So what is it you want?” Lynn had
recently joined the company and was eager
to hear her project managers’ concerns.

“What do we want?” Syd asked,
grinning. “Well, double the salary and
triple the vacation time would be nice.
But just getting some credit for what we
accomplish would suffice. We work
hard, and we want to be recognized. It’s
not just us. You’ll see this is an IT-wide
problem. People don’t feel valued.”

Lynn nodded. “Serious stuff, definitely.
So when you say you want to be
recognized, what do you mean?”

“Well,” Chris said, “I guess we just
want to be acknowledged once in a while.”

Lynn looked puzzled. “I’m still not clear.
What does it mean to be acknowledged?”

“Um, er, well, uh . . .” Syd and Chris
hemmed and then hawed.

“See, here’s the thing,” Lynn
explained. “If you’re going to claim that
managers are clueless, you need to offer
clues so they understand what you want
and why it matters. Even ‘clueful’
managers might misinterpret what you
mean by ‘recognized’ and ‘acknowledged.’
These are vague terms that mean different
things to different people.”

She gave them a chance to take this
in, and then added, “You need to do
some thinking. What, specifically, do you
want? How will it help? How will it
make a difference to you and to the
company? Focusing on what you don’t
want doesn’t clarify what you do want.
And concrete recommendations will get
you a lot further than vague wish lists.”

With head-slapping awareness, Syd and
Chris realized that they’d been clueless

Award they give each quarter to two
people who’ve pulled off miracles—
what an insult to the rest of us!”

“And what would you like instead?”
asked Lynn.

“Hmmm,” pondered Chris, thinking
out loud. “Sara and Jeff certainly
deserved the award, so that’s not the
issue. What bugs us is, what about
everyone else—all the people who are
just plain working hard and getting the
job done? They deserve credit too. But
how, exactly, I’m not sure.”

“Fine. You’ve articulated the issue.
Now you can do some thinking about
what would help. Now, what else?”

Syd was on a roll. “Every time
something goes wrong, Kent remembers
who we are and he rubs our faces in it.
“What we would like,” he said, pleased
with himself for having caught onto the
formula, “is some attention paid to
what we’re doing well. Even an
occasional thank you would help. Some
sign that management appreciates our
efforts would go a long way.”

Lynn was pleased. “This is a great
start in translating vague grievances into
concrete recommendations. Talk with
your teams to see what else you can come
up with. Be specific, and be sure to
include examples such as the ones you’ve

too—both about what they wanted from
management and how to frame what they
wanted to ensure better-than-zero odds of
getting it. But as a long-time manager,
Lynn had seen this pattern repeatedly.
Employees grumble about their grievances
but give little thought to what would
rectify the situation. Even worse, they
expect management to intuit both
what’s troubling them and what will
reverse the situation.

“Let’s see if we can start to pin this
down a little,” Lynn said. “Tell me more
about this issue.”

Syd went first. “The senior team
seems unaware that we even exist.
When the IT top cheeses do their
ceremonial march around the floor each
December to wish us a happy new year,
it’s obvious from their lame comments
that they don’t even know what we’re
working on.”

“OK,” Lynn responded. “So what
would you like instead?”

Syd reflected a moment. “Well, I
guess an occasional communication—
in person or even just by email—that
indicates they’re aware of what’s going
on down here in the trenches.”

“Good. That’s a little more specific.
Now what else?” asked Lynn.

Chris exclaimed, “The Superstar

12 BETTER SOFTWARE JANUARY 2006 www.StickyMinds.com

Management Chronicles

G
ET

TY
 IM

A
G

ES

Say It. . . Don’t Stew in It
by Naomi Karten

Testing Computer Software
Author: Cem Kaner/Jack Falk/Hung Nguyen

Lessons Learned in Software Testing
Author: Cem Kaner/James Bach/Bret Pettichord

Code Complete (2nd Edition)
Author: Steve McConnell

The Mythical Man-Month
Author: Fred Brooks

Software Testing Techniques: Finding
the Defects that Matter
Author: S. Loveless/G. Miller/R. Prewitt Jr./
M. Shannon

Peopleware: Productive Projects and
Teams (2nd Edition)
Author: Tom DeMarco/Tim Lister

Systematic Software Testing
Author: Rick Craig/Stefan P. Jaskiel

Design Patterns
Author: Erich Gamma/Helm Johnson Vlissides

Software Requirements (2nd Edition)
Author: Karl Wiegers

The Art of Software Testing
Author: Glenford Myers

Software Testing in the Real World
Author: Edward Kit

A Practitioner’s Guide to Software
Test Design
Author: Lee Copeland

How to Break Software Security
Author: James Whittaker/Herbert Thompson

Refactoring
Author: Martin Fowler

Managing the Testing Process,
(2nd Edition)
Author: Rex Black

Quality Software Management,
Volumes 1-4
Author: Gerald Weinberg

The Pragmatic Programmer
Author: Andrew Hunt/David Thomas

Software Engineering:
A Practitioner’s Approach
Author: Roger Pressman

Software Project Survival Guide
Author: Steve McConnell

Waltzing with Bears
Author: Tom DeMarco/Tim Lister

www.StickyMinds.com JANUARY 2006 BETTER SOFTWARE 13

just told me. When you’re done, I’ll go
over it with you. If you can make a
persuasive case, I’ll bump it upstairs.”

“One more thing,” Lynn said as
Syd and Chris headed for the door. “Don’t

STORY LINES
• DON’T JUST VENT. DO SOME-

THING. Venting may feel good, but
it rarely generates change. Just the
reverse, it can give you a reputation
as a complainer.

• CLARIFY WHAT THE PROBLEM IS.
What are your grievances? Why do
they matter? How do they interfere
with your ability to deliver results?

• EXPLAIN WHAT YOU WANT AND
WHY IT MATTERS. Changes that
don’t help management achieve its
goals won’t get far. To get attention,
explain how the changes you’d like will
help management achieve its goals.

• OFFER SPECIFIC, CONCRETE
RECOMMENDATIONS Identify the
actions or steps needed to achieve
the results you’d like to see.

Your
Favorite

Books
Thank you to everyone who participated in our recent survey. The following
books topped your list of favorites. Don't forget to visit the Books Guide
on StickyMinds.com to read reviews of many of the books you see here.

Don’t Stop Now!
Log on to StickyMinds.com and join
Naomi Karten and your peers in a

conversation about this topic. At the
end of the digital column, add your views

or just read what others have to say.

forget: Managers like to be recognized,
acknowledged, and appreciated, too.” {end}

Naomi Karten has taught seminars and
delivered presentations to more than
100,000 people internationally. Her training
and consulting services help organizations
improve customer and employee satisfaction,
strengthen teamwork, and manage change.
Her books, Managing Expectations and
Communication Gaps and How to Close
Them, provide practical ideas and advice
on carrying out projects, improving
service, strengthening relationships, and
managing change. She is a regular
contributor to StickyMinds.com and Better
Software magazine. Contact her at
naomi@nkarten.com or via her Web site,
www.nkarten.com.

Down to the (e)Letter

14 BETTER SOFTWARE JANUARY 2006 www.StickyMinds.com

TOOL TIME
Coming to a mailbox near you, a new monthly eLetter
covering tools and automation for the software develop-
ment lifecycle. The Sticky ToolLook will feature an
interview with an expert in the field—bringing you insights
on tools and automation straight from the source. Don't
miss what industry veterans like Danny Faught and
Linda Hayes have to say about tools and automation.

WEEKLY UPDATE
The weekly What’s New Gram highlights new book

reviews, articles written by top industry professionals,
contributions from your peers, conference and training
notices, and so much more. It’s really the best way to
keep abreast of the latest content being published on
StickyMinds.com.

OUR FAVORITE PICKS
The StickyLetter features hand-picked content from

StickyMinds.com. Find out what topics and content we
think you should read or re-read, and learn how “Our

Take” on the industry can broaden your horizons and
help you view life around your work differently. For past
issues, visit http://www.stickyminds.com/
SLArchive.

NEWS THE STICKYMINDED WAY
We know you’re busy and don’t have a lot of time to

sort through the hundreds of computer industry news
items published each month, so let us do the work for
you. Each Between the Lines eLetter summarizes
interesting software industry news that will inform and
sometimes surprise you. For past issues, visit
http://www.stickyminds.com/BTLArchive.

IT’S AS EASY AS 1, 2, 3!
If you’re not already receiving our eLetters, subscribe

today for free. It’s as easy as 1: sign on to StickyMinds.com;
2: make sure your email is in the right field and that you’ve
selected the eLetters you’d like to receive; and 3: click Go!
http://www.stickyminds.com/eletters.asp

At Your Service
Need an answer to a question? Try asking your peers. Post your queries on our Discussion Boards and join the

conversation at http://www.stickyminds.com/discussionboards.
If you have some insight you'd like to share, why not post an article or paper on StickyMinds.com? You can

upload your work for possible publication on StickyMinds.com at http://www.stickyminds.com/submit.

brain food

“This is the era of the soundbite. One of the bumper-sticker
mottoes I drill into all of my project management students is:

Adding more people to a late project always makes it later.”
StickyMinds.com member GENE FELLNER commenting on Linda Hayes’s article “Less is More”

(accessible from the column archive on StickyMinds.com).

Read the article or see what other users have to say by visiting http://www.stickyminds.com/comments8-1.

@What’s Happening

www.StickyMinds.com JANUARY 2006 BETTER SOFTWARE 15

EDITOR’S PICK

Out of the Frying Pan and Into the Melee
Too many chefs in the kitchen
can spoil a meal. And if you’re a
member of a big family that
loves to cook, like mine, a
kitchen full of self-proclaimed
chefs can be more explosive
than water in a pan of hot oil.

There’s little method to our
cooking madness. We jump right
into the frying pan—at least

that’s what it feels like. My family packs into the kitchen
and begins prepping meats, vegetables, and herbs.

As the smoke thickens, we get into excited discussions
about how much mirepoix should be used in the risotto,
whether there’s too much salt or not enough white pepper
in the stew, and if the meat in the oven needs to be
basted more frequently. It might be hard to imagine
we’re capable of turning out a meal without burning
everything, but we manage. That’s just how we operate,
and we love each and every intense minute we work
together. We even joke about our raucous way of cooking,
but I can’t help but think that there’s always one too
many hands in the kitchen.

Linda Hayes’ column “Less is More” paints a similar
scenario. She discusses a study that concludes “the more
people you add to a project, the lower your per-person
productivity and the higher the defect rate.” In the case
of the holiday meals my family and I feverishly prepare,
I bet we’d be able to sit down to eat at least an hour
earlier if fewer people were involved in the cooking
process. With our “staff,” we tend to spend more time
dodging hot pans, knives, and each other than actually
cooking. And while we’re adding the finishing touches
to the dishes, we’re also spending a little extra time
picking out the charred pieces.

Next time you find yourself in a brawl of team members
fighting to finish a project on time, step back and ask if
your efforts are really needed. I’m not sure my family will
ever cut down on the number of helpful hands in the
kitchen—and I hope our mayhem never changes—but I
must admit, doing so would serve us well in the long run.

Read Linda’s column “Less is More” at
http://www.stickyminds.com/editorspick8-1.

Pointer
Conference Materials
Six Impossible Truths about Developing Software—All Before Breakfast

Alice laughed. “There’s no use trying,” she said: “one can’t believe impossible things.”

“I daresay you haven’t had much practice,” said the Queen. “When I was your age, I always did it for half-an-hour
a day. Why, sometimes I’ve believed as many as six impossible things before breakfast.” (Lewis Carroll, Through
the Looking Glass)

Tim Lister discusses the impossible things that many developers believe—things that often make us look just flat stupid
to the outside world. He believes that declaring things to be impossible is both therapeutic and the first step toward finding
a better way to deal with our limits and frailties. Working to get the requirements right before beginning development
is an example of believing an impossible thing. Learn about Tim’s five other impossible truths and begin your personal
recovery program at http://www.stickyminds.com/powerpass8-1.

for building better software

FRANCESCA MATTEU

Francesca Matteu, managing editor of StickyMinds.com, brings a background
of public relations to her position. Francesca's previous experience includes
Web site development and design and print publication management.

16 BETTER SOFTWARE JANUARY 2006 www.StickyMinds.com

Testers need to strengthen their soft
skills just like athletes need physical
conditioning. A successful basketball
player must have certain “technical” skills:
dribbling, passing, and shooting. But
without a foundation of general physical
fitness and agility, a player will not make
the best use of those skills and will never be

a star. For an athlete, physical fitness is
a basic requirement and an enabler for
technical skills.

As a tester you are a knowledge worker,
making your living by applying technical
skills. Instead of the physical fitness skills
needed by an athlete, you need soft skills to
empower and put your technical skills to
work. As you build up your people skills
and enhance your ability to communicate,
you are bulking up on useful skills that will
shape you into a top-form tester.

Two specific people skills, teamwork and
communication, are basic skills that every
successful tester needs—even the most
junior. Unfortunately, these people skills are
often neglected in testers’ education plans.

Teamwork Toning
While teamwork is critical for everyone

in IT, testers have unique challenges as

team members. A tester must be seen as a
solid contributor to the collective effort but
must also maintain a level of independence
sufficient to do your job. Achieving this
crucial balance is difficult, and soft skills
are essential to help you do it.

At some point in their careers, most
testers hear statements like these:

� “That’s not a fair test! Nobody
would do something like that.”

� “You’re asking too many questions.
The developers are complaining it’s
taking too much of their time.”

� “You’re just not a team player.”

As a tester you are an anomaly. The
project’s end product is a working
software system, which most of the
project team members are devoting all
their efforts to building. Then you come
along and expose the flaws.

Your job (perhaps your secret
delight) is to break the software everyone
else is working hard to create. If you test
well, you will probably find many bugs
that will take time to fix and retest.
When you report those bugs, you are
providing valuable information, but
your work may make developers feel

exposed and threatened. It is not a large
leap for developers—particularly on an
inexperienced team—to start seeing you
as an obstacle rather than a helper. If the
development lead and project manager
feel the same way, your testing skills
alone can’t save you and you are at risk
of becoming a pariah.

Alternatively, you could end up in a
precarious situation in which someone
is asking you to suppress information:

� “Look, you don’t need to log these
bugs. I’ll just fix them right now.”

� “All this stuff about so-called
risks is just negative. That sort of
talk is not helping the project.”

� “We’re all a team here. It doesn’t
make sense for you to report
a red status on your part of
the project when everyone
else’s is green.”

It can be tempting—appealing to your
sense of camaraderie and teamwork. Or
it can be coercive, with someone’s refusal
to hear you or trying to shame you into
silence. If you succumb, you will
compromise your effectiveness as a tester.

You need people skills in order to

www.StickyMinds.com JANUARY 2006 BETTER SOFTWARE 17

By Fiona Charles

Testers are almost always part of a team. As the only tester on a project

team, or as a member of a test team that is part of a larger project team,

we need to interact with our colleagues to get our jobs done. But for some

testers, that interaction—the people skills, or soft skills—is their weak spot.

Have a clear understanding of the
tester’s role.

Your job is to provide information
by surfacing facts and reporting
them, not by suppressing informa-
tion.

You are neither the quality gate-
keeper nor the quality judge and
jury. Never be judgmental about
bugs or other problems, even if—
and especially when—the quality
is poor.

Assess the culture of the team and
find ways to fit in.

Identify the principal objective and
make it your objective. Although
this may sound obvious, it’s hard for
most testers to put another objective
ahead of quality and really mean
it. If meeting the schedule is para-
mount, you need to focus on finding
bugs that might threaten the schedule.

Use the project objective as the
frame of reference for your impor-

tant conversations. If you talk in
terms of absolute quality when the
project driver is the schedule, your
message will seem irrelevant. Instead,
talk about project issues in relation
to schedule risk.

Make allies rather than enemies.

Try to understand what motivates
other team members. Are developers
rewarded for “completing” develop-
ment on time, regardless of whether
they have tested their code?

Offer to help where you can, but
never neglect your own job.

Don’t drop public bombshells that
could embarrass people or catch
them by surprise.

Don’t try to score points in meet-
ings. If your testing is blocked by
bugs, talk to the developer or
development lead privately and
enlist her help. Then you can
report that you are working
together to resolve the problem.

Stand up for what you believe in,
but pick your battles. It helps to
have a mental framework, such as
project risk, for deciding which
battles are crucial. If the schedule
is the project driver, then evaluate
each potential battle in relation to
schedule risk. Is this issue important
enough to delay the project?

Learn to negotiate.

Propose a reasonable conclusion
that is in the best interest of the
project. People often begin negoti-
ations with unreasonable demands
in case they need to negotiate
down, but this can foster bad feelings
and injure your credibility.

Avoid adversarial negotiation. Offer
win-win propositions.

Ask how you will be measured,
and ask for regular feedback on your
performance.

s

s

s

s

s

s

s

s

s

s

s

s

What can you do to become part of the team? The best strategy is to present yourself from the beginning as a dedicated
team member with a specific job that adds value and contributes to the team’s goals. It helps to remember a few simple tips:

Get a Game Plan

exercise your testing skills and combat
these obstacles. Ideally, you will be able
to interact with others so that your
position on the team is unquestioned.
When you cannot avoid “teamwork
issues,” your credibility will depend on
your soft skills.

Communication Conditioning
Next to teamwork, good communi-

cation is the most important soft skill a
tester can have.

WRITTEN COMMUNICATION
Like it or not, writing is a requirement

of your job as a tester. Often, a defect
report is your first and most challenging
writing task. Entry after entry comes
back with “Not enough information”
or “Can’t reproduce,” yet you know the
problem is readily reproducible.

Because defect reports are central to
every tester’s job, this is an excellent
place to improve your writing skills. If

Completeness:
� Is there anything missing?
� Describe what happened and

why it is a problem.
� Include the information required

to explain how you found the
problem, including the data used
and the steps followed.

� Demonstrate the problem with
screen shots or other evidence.

Concision:
� Does it contain extraneous infor-

you can write a good bug report, you are
well on the way to writing anything.
Focus on the three Cs:

Clarity:
� Is this a clear, unambiguous

report, written in a logical order?
� Write using simple terms.
� Do not leave room for misinter-

pretation.
� Start by summarizing the most

important information, and
then give supporting detail in
logical order.

18 BETTER SOFTWARE JANUARY 2006 www.StickyMinds.com

“One of the most difficult
conversations you can have as a
responsible tester occurs when

you have to persuade managers that
the software you have been

testing is not ready...”

mation, or is the report verbose?
� Focus on essentials.

Someone will read every project
document you write. Improve your
reports by asking developers for
feedback and incorporating their
suggestions. This will make the lives of
the developers easier and encourage
them to be helpful with your reports.
Writing, like programming, requires
debugging and testing.

Practice is essential. Write something
every day, and use the three Cs to
examine your work critically. Write
about anything—from impressions of
the day’s testing to observations of the
subway ride home. Set each piece aside
for a few days and then review it. Does
it say what you wanted to say? How
could you make it more clear, complete,
and concise?

Finally, read on any subject that
interests you by authors whose writing
you admire, and try to understand why
their writing works. What makes a
particular book or article clear, interesting,
and easy to read?

ORAL COMMUNICATION
You can flex your communication

skills while speaking, too. When you
speak up in a status meeting or talk to a
project manager about what you have
not been able to cover in your testing, you
need to be clear, complete, and concise.

Many everyday occasions require a tester
to have good oral communication skills:

� Asking questions about the soft-
ware and interpreting the answers

� Interviewing for jobs or project roles
� Presenting testing status in a

project meeting

Each of these requires you to
communicate your meaning accurately.
You also need to hear what others are
saying and respond appropriately.

STAY IN-BOUNDS
If you dive straight into the details or

wander off the point, you will lose your
audience. Start by summing up the critical
information. That may lead to questions
or a request for supporting details. Only
when you are sure your audience has

understood the main point—and is willing
to hear more—should you move out into
amplifying your message. It is essential to
stick to the point and deliver the details in
a logical sequence. A tester who can tell a
compelling story in this way is more likely
to be heard.

Practice by writing down the most
important points ahead of a meeting.
Summarize each point concisely without
obscuring the message and rank the
points in order of importance. After the
meeting, review how well you did.
Did the participants quickly grasp the
essential information? Were there questions
you could have anticipated? Were people
impatient with your explanations? What
could you improve next time?

Ask yourself the same questions
about impromptu conversations. If
someone requests information and seems
dissatisfied with your answers, ask them
how you can improve your delivery.

ENDURANCE TRAINING: Listening
Listening is an equally important

part of communication. Anytime you
talk—and even when you don’t—you
should be prepared to listen.

As in exploratory testing, the answer
to one question will lead you to the next
question. Even if you have brought
a prepared set of questions to the
interview, it’s dangerous to stick to your
agenda when a developer or architect is
potentially telling you important things
about the software. Ask clarifying
questions, delve deeper on a particular
thread, and broaden the inquiry—all
these depend on your ability to hear
what is really being said.

Listening to questions is as essential
as listening to answers. This should be
obvious as early as the job interview.
Some testers come to interviews and
don’t really hear the questions. If I’m
faced with a candidate’s failing to
answer my questions after a couple of
tries, I terminate the interview. I know I
will have a frustrating time with a poor
listener on my team, even if that person
is a wonderful tester. Solid contenders
for the job will admit they don’t understand
a question or ask for clarification before
answering thoughtfully.

The need to listen is perhaps less

www.StickyMinds.com JANUARY 2006 BETTER SOFTWARE 19

Be prepared.

Have a clear sense of your vision
of testing and the value it brings to
the project.

Keep track of your work, and be
prepared with facts to demonstrate
coverage and progress.

Prepare and file a weekly status
report, even if it’s not a project
requirement. At the very least,
clearly outline what you did, what
you found, and any issues impeding
progress. If nobody wants it, do it
for yourself.

Interact with the others in a conversation.

Listen carefully to the other
person’s point of view, and ask for
clarifications where needed.

Deal with questions directly. If you
don’t know the answer to a particular
question, say that you will investigate
and come back with the answer.

Acknowledge the importance of the
other person’s viewpoint. If you
can’t honestly do that, at least
acknowledge the strength of his
convictions or feelings, as in, “I
understand that this is important
to you.”

Always try to sound cooperative
and positive.

Watch your tone. It can be difficult to
avoid sounding impatient or abrupt
when you see your point of view as a
self-evident truth, but you will be
more persuasive if you are open.

Watch the other person’s reactions.
If you sense resistance, you may be
coming on too strong. Make sure
you explain your points, and don’t
patronize others if they take a little
time to get there.

Try to maintain an even emotional
keel, especially when a project
becomes stressful.

If it helps to think you wouldn’t be
employed without software bugs,
then do that.

Ask for time is you need it.

If you are caught by surprise, say some-
thing like, “This is an important con-
versation, and I want to do it justice.
May I have a little time to prepare?”

s

s

s

s

s

s

s

s

s

s

Tips for Difficult
Conversations

from participants before final distribution.
Summarize the key points of conversations
and play them back. During a conversation,
you can do this before moving to the next
point. Say something like, “I’d like to
play that back to make sure I understand
what you’re saying.”

Playing back important conversations
in writing will ensure that you and the
other participants agree about what was
said and prevent any later misunderstanding.

Summarize the key points in an email,
and preface your message with something
like, “The following summarizes my
understanding of our conversation. Please
let me know of any omissions, errors, etc.”

Review the comments that come back.
If you missed or misinterpreted important
information, ask yourself how that
happened. Were you too focused on
thinking about your next point to really
hear the other person? Were you trying to
fit what you heard into a preconceived
model? These are common causes of poor
listening. Keep notes about what you

learn, and review the notes regularly as a
reminder of what to watch out for.

SWEAT IT OUT: Difficult
Conversations

Sooner or later, every tester will have
to deal with difficult conversations—for
example, defending your test strategy to
skeptical managers or developers, or
explaining or justifying why testing is
taking so long.

Challenging situations like these can
happen on any size project. Project man-
agers, architects, and developers some-
times hold firm opinions about the
tester’s place on a project and just how,
or how much, you should test.

Occasions will arise when you have to
deliver unwelcome news. One of the most
difficult conversations you can have as a
responsible tester occurs when you have
to persuade managers that the
software you have been testing is not ready,
and it would be a better use of everyone’s
time to send it back to development.

Conclusion
Soft skills are not only skills in and of

themselves but also are a critical part of
your mental conditioning as a master of
technical skills. Developing teamwork and
communication skills takes practice and
patience. As you develop and nurture all of
your skills—technical and non-technical,
hard and soft—you will find less and less
distinction between them. Together, they are
all skills that will make you a more
effective tester. {end}

Fiona Charles specializes in managing large
systems integration tests for clients in retail,
banking, financial services, and telecom-
munications. With more than twenty-five
years of experience in software and systems
development projects, she has been a
technical writer, tester, QA manager,
consultant, and test manager, most recently
with IBM Global Services in Toronto.
Contact Fiona at fccharles@sympatico.ca.

20 BETTER SOFTWARE JANUARY 2006 www.StickyMinds.com

Sticky
Notes

For more on the following topic, go to
www.StickyMinds.com/bettersoftware.

■ Further Reading

obvious in a status meeting, but a tester
cannot afford to ignore everyone else’s
status. Your effectiveness depends on
knowing what is going on elsewhere in
the project. Listening to others—observing
their body language, hearing what they are
saying and what they are not saying, and
asking pertinent questions—gives you
crucial clues about the state of the
software. A project meeting provides an
opportunity to pick up other people’s
perceptions about the testing or testers
and possibly influence them for the better.

Informal conversation with other
project members is another common
situation where listening skills are
important for a tester. Typically,
developers’ chitchat is far in advance of
official news and can be invaluable in
directing your testing. Listen carefully
and apply a “reasonableness” filter.

You can practice listening in various
ways. Build in a feedback step to verify
that you heard correctly. Offer to take
meeting minutes and request feedback

Yet?Yet?

AreWeAreWe

There
CREATING PROJECT

DASHBOARDS TO DISPLAY

PROJECT PROGRESS

BY J O H A N N A R OT H M A N

There

22 BETTER SOFTWARE JANUARY 2006 www.StickyMinds.com

When it comes to projects, there are as
many questions to answer as there are
project teams, but “Where are we?” is
by far the most popular. The key to
understanding a project is to make regular
measurements—both quantitative and
qualitative—and display the measurements
publicly. When project managers display
these measurements as part of the project
status, teams are able to adjust their work
and proceed more successfully.

I like to call these measurements a
“project dashboard.” You may not be
able to show all the project measurements
in one small area, but taken together, the

I like to measure a project along at
least four out of six dimensions. I think of
this as a project pyramid (see Figure 1).

project measurements display your
velocity, distance, consumption, and
location—much as a car dashboard does.

Use Multi-dimension
Measurements

It’s easy to measure some facets of
a project, such as the project start date,
the current date, and the desired release
date, and say, “We’re X percent of the
way along,” because the project team
has used that percentage of time. But
if all you measure is the schedule, you’re
almost guaranteed not to meet the
desired deadline.

Figure 1: Project pyramid

www.StickyMinds.com JANUARY 2006 BETTER SOFTWARE 23

The outside of the pyramid represents
the constraints under which management
has approved and funded the project.
These project constraints are the work
environment, the people and their
capabilities, and the proposed project
cost. I call them constraints because
senior management tends to fix these
attributes early in the project, and they
tend to be difficult to change. Cost is the
most likely to change, but in my experience
it changes only when it becomes clear that
the team can’t meet the desired deadline.

The project requirements are what
your customers care about. (And yes, if
you work in an IT group, it is likely that
your customers are the same people who
constrained the project’s cost, people,
and environment.) Your customers care
about what you’re going to deliver (the
feature set), when they’ll receive it (time
to release, the schedule), and how good
that stuff is (defects). If you measure all
sides of the pyramid, you will see a truer
picture of your project than if you measure
only one thing, such as schedule or defects,
the two most common measurements I see.

Why Not Measure
Earned Value?

So why not measure earned value?
Earned value (taking credit for what
you’ve been able to create in a specific
amount of time) was developed to manage
the tradeoff between measuring just the
schedule and measuring what’s been
accomplished. Earned value makes sense
for products that can be created in self-
contained pieces. You create a piece and
measure how long it took and how much it
cost (in people and time) to create that piece.

But for many software projects, it’s
extremely difficult to calculate earned
value. That’s because all parts of a software
project are interdependent. Even if you
implement feature by feature—which is as
independently organized as you can make
a software project—when you work on a
new feature, you may have to return to
completed work and change it. When you
change completed work, it’s harder to
determine the true earned value. Did you
lose value because you changed something?
Or, did you build on already-earned value?
I have not worked on any project where it

hadn’t tracked its progress, including the
number of features, team members would
not have been able to explain to their
management why things took “so long.”

If I’m not implementing by feature, I
like to use progress toward release criteria
as a project completion measurement.
Table 1 is an example of how I use release
criteria to track project completion—or
the lack thereof.

Release criteria are a late-in-the-project
measurement. Even if you start assessing
release criteria progress at the beginning
of a project, most often, the release
criteria data are available close to the end
of the project.

No matter what lifecycle model you’ve
selected for your project, to determine
how good your initial estimate was, you
can use the Estimation Quality Factor
(EQF), originally described by Tom
DeMarco in Controlling Software Projects.
At periodic intervals during the project,
the project team answers the question
“When do you think we’ll be done?” Each
data point is the consensus agreement on
when the project team believes the project
will be finished. At the end of the project,
draw a line backward from the release date
to the beginning of the project. The area
between the line you drew and the when-
will-we-be-finished line is how far off your
estimation was. This is a great technique for
people to use as feedback on their individual
estimates. But even if you don’t use it for
feedback, it’s a great technique for the
project manager to see what’s going on.

was possible to calculate earned value. In
my experience, earned value is too often a
fuzzy measurement for software projects.

Measure Project Completion
By using several measurements

around the project pyramid, you can
measure project completion. Project
completion is a function of how accurate
your original estimate was and how
much progress you’ve made, but measuring
only the schedule progress is not good
enough. The only accurate way to measure
progress for a software project is to
measure how many features the project
team has completed, how good those
features are, and how many features are
left to implement.

I once assessed a project in an
organization where the developers
had met every single date in the
project schedules, but the testers were
consistently late. Seems suspicious,
doesn’t it? The developers hadn’t
actually met any milestones at all. They
checked in stubs and fixed the code
when the testers reported defects, but
because the project managers only
looked at the dates—and never measured
anything but the dates—the developers
could say they had met the deadlines
without actually meeting them.

As shown in the velocity chart in
Figure 2, the number of features grew
over the course of the project. The project
team started with fifty features but
released sixty-five features. If the team

Velocity Chart

Date

1/
1

2/
1

3/
1

4/
1

5/
1

6/
1

7/
1

8/
1

9/
1

10
/1

11
/1

12
/1

Fe
at

u
re

s

Figure 2: A velocity chart can be used to track schedule progress.

Figure 3 is a chart of an EQF for a
project that was originally supposed to
be nine months long. For the first
couple of months, when the project
manager asked when people thought
they’d finish, they said “September 1.”
And for a couple of months, they were
optimistic, thinking that they might
finish early. But during the fifth month,
team members realized they didn’t
know enough about some of the
requirements. What they discovered
changed the architecture and pushed
out the date. For the next few months,
they still weren’t sure of the date. They
realized in the last three months of the
project that, because of the changing
architecture, they were encountering
many defects they hadn’t anticipated.
So, evaluating EQF, a qualitative metric,
was helpful to the project manager and
the project team as a check against the
progress charts.

Schedule estimates are just guesses,
so anything you can do to show and
then explain why your schedule varies
from the initial plan will be helpful
to anyone who wants to know “where
are we?”

Collect a Variety of
Project Measurements

Project completion measurements may
be all your managers want to see, but if
you’re a project manager or a technical
lead on a project team, I’m sure you’d
like some early warning signs that the
schedule may not be accurate. To keep
my finger on the pulse of a project, I
monitor several measurements:

� Schedule estimates and actuals,
aside from EQF

� When people (with the appropriate
capabilities) are assigned to the
project versus when they are needed

said to senior management, “Don’t
expect us to pull in the schedule by a
month. We started late; we can’t make up
the time.” To the project team he said,
“I’d like you to work as intensely as you
can, without working overtime and get-
ting tired. We don’t have time for you to
make mistakes. Do the best job as quickly
as you can, and we’ll keep tracking where
we are.”

See When Qualified People
Actually Work on the Project

Too many projects start starved of
resources. This can happen if some of the
people are still working on a previous
project, if people are yanked off partway
through the project, or if your project is
competing with several others for people’s
time. The problem with starving a project
is that no matter how hard people work
when they are working on the project,

they can’t make progress if they are
assigned elsewhere or are attempting to
multi-task on several projects. Figure 5
shows a project where the total number
of planned person-months (666) was 75
percent of the actual person-months

� Requirements changes throughout
the project

� Fault feedback ratio throughout
the project

� Cost to fix a defect throughout
the project

� Defect find/close/remaining open
rates throughout the project

Measure the Schedule When
It’s All You’ve Got

Gantt charts aren’t the only thing I use
to measure a schedule. Instead, I look at
when the project team expected to meet a
particular milestone and when they actually
met that milestone. If the project team
starts the project late (no matter what the
first milestone is), that project is not
going to meet the desired end date. Time
lost is never going to be regained. Figure 4
shows what a comparison of schedule
estimates and reality looks like.

This project is a modified waterfall
lifecycle (the next phase can start without
the previous phase being complete), but
there are no iterations. Notice that the
project started a full month late. When
the project manager posted this chart, he

24 BETTER SOFTWARE JANUARY 2006 www.StickyMinds.com

Project 1 EQF

E
st

im
at

ed
 E

n
d

 D
at

e

Date of Estimate

Figure 3: Example EQF for a project

Table 1: Use release criteria to track project completion.

Criterion

Performance of Scenario 1
under 10 seconds

Number of defects found
decreasing for at least
4 weeks

Status

5/1, build 57:
Performance < 30 seconds

5/1, build 57:
22 defects found, same as
last week

Status

5/8, build 70:
Performance < 15 seconds

5/8, build 70:
15 defects found

Status

5/15, build 78:
Performance < 12 seconds

5/15, build 78:
5 defects found

Status

5/22, build 85:
Performance < 8 seconds

5/22, build 85:
2 defects found

www.StickyMinds.com JANUARY 2006 BETTER SOFTWARE 25

(878). Unfortunately, the team’s output
was about 66 percent of the desired result.

For more expense (about 1.3 times the
original planned cost), the team delivered
fewer features (0.3 times the original
feature set). You might be asking why the
project team would deliver less than
planned for more cost? This project
used a staged delivery lifecycle, where
requirements, analysis, and architecture
were timeboxed. The project team could
obtain a good idea about the requirements
and their effect on the architecture, but
not know all the requirements in detail
or know the implications of those
requirements on the architecture. The
original plan was to spend the first two
months obtaining a good idea and the
next two months performing an initial
iteration to make sure the rest of the
project would succeed. In order to be
successful, the project plan required
all the people planned in those first
four months to perform all the initial

that had all the features, most of which
didn’t work.

This chart supplied the project
manager with opportunities throughout
the project—and when planning for
the next project—to explain to senior
management the problem of starving
a project.

If you ever start your projects
starved of people who are capable of
performing at 100 percent, this figure
can help explain the consequences of
that decision.

Determine the Rate of
Change on Your Project

You may be working with people who
are uncomfortable with velocity charts.
Or, they may not believe the impact that
some changes have on requirements. In
that case, you can use a requirements
change chart (see Figure 6).

In this case, I was the project manager.
I had a simple criterion for deciding if the
requirements change was major or
minor. A minor change affected one
module, and a major change required
changes to more than one module. To
make this decision, I used the principle
that “interface changes between modules
tend to create defects.”

In this chart there are a lot of small
changes—something most of us expect on
projects. But we also encountered some
major requirements changes late in the
project (Week 22). When I saw these
changes, I was able to explain to senior
management that either the project would
be later than we expected or the number of
defects would rise. But with these changes,
it was clear that the original date and the
original feature set with the small number
of expected defects was not possible.

investigation and iteration work. Since
the people were not available and the end
date was non-negotiable, the project
team needed more people to prototype
and iterate in parallel.

As people prototyped and iterated,
they found mistakes—work that had not
been completed in the initial timeboxing
and iteration. Team members decided
they would rather release a product that
worked a little rather than release a product

Des
ig

n
co

m
pl

et
e

In
iti

al
 p

ro
je

ct
 p

la
n

Pro
je

ct
 s
ta

rt

Cod
e

co
m

pl
et

e

Sys
te

m
 te

st
 s
ta

rt

Bet
a

st
ar

t
Shi

p

Schedule Estimates vs. Actuals

Figure 4: Schedule estimates vs. actuals

Figure 5: Tracking people’s actual assignment to the project

Requirements Changes

Week

1 4 7 10 13 16 19 22 25 28 31 34

N
u

m
b

er
 o

f
ch

an
g

es

Figure 6: Requirements changes by week

See if the Developers Are
Making Progress or Spinning
Their Wheels

Once the project team is writing code,
you can measure the fault feedback ratio
(FFR). The FFR is the number of bad
fixes to the total number of fixes. In my
experience an FFR of 10 percent or more
says that the developers are having
trouble making progress.

I like to measure the FFR on a weekly
basis. I use the FFR as data to initiate a

discussion with the developers and
testers. If I see a week where the FFR is
high, I first check to see how many total
problems were fixed that week. If only
four problems were fixed and one was a
bad fix, the developers and testers are
probably OK. But if I see twenty defects
fixed and five of them were bad fixes (25
percent), it’s more likely that somebody
or a few somebodies are having trouble.
In Figure 7, notice that the FFR starts to
get high around Week 6 and stays over
10 percent until Week 13. Once the project
team hit the second week of high FFR, the
project manager instituted peer review on
all fixes. That helped, but there was a delay
between the start of peer review and the
reduction of FFR back to numbers where

release. We normally think of units as
dollars or some other form of currency.

I’ve measured cost to fix a defect, and
the numbers I find are different. Table 2
shows costs from a couple of projects.

Remember, it’s not just the cost per
defect; it’s the cost per defect times the
total number of defects. If you’re not
looking at the overall cost, you can’t know
where to spend your time. Based on cost
to fix a defect from previous projects, you
might decide to be proactive and use in-
spections of key project documents, test-
driven development, or pair programming
for the more challenging defects. Or you
might decide to monitor cost to fix a
defect and react as necessary, such as
choosing when to institute peer review
of fixes or inspection of all code.

If you haven’t performed any proactive
defect-finding activities, the cost to find a
defect is fairly small. But the cost to fix
can be high, and the overall cost to fix all
the defects is very large. If you have been
proactive using techniques such as
test driven development, pair programming,
inspections, or peer reviews, the cost to find
a defect can be higher, because you’ve
already looked for defects. But the cost to
fix a defect tends to be lower when a
project team has been proactive in trying
to find defects early. And the overall
number of defects is lower, lowering
your total cost to fix defects for a
particular release.

I monitor cost to find and fix so I can
see if the developers or testers are
surprised by what’s in the code base. I
have a couple of rules of thumb, assuming
the developers have not been proactively
looking for defects:

� The longer it takes developers to
fix a problem, the more likely it is
they are afraid of touching parts of
the system or don’t understand
parts of the system.

� The longer it takes the testers to
find problems, the less they know
about the product or the less they

the fixes didn’t interfere with progress.
To identify trouble areas, I first ask

the developers if they are running into
trouble with their fixes. I generally
phrase the question this way: “When you
fix something here, does a problem pop
up over there?” I’ll ask other questions,
all leading to asking the developers if
they need any resources to fix this problem
altogether. If I hear that the developers
want to redesign a module, we discuss the
issues for that redesign.

My next question is for the testers:
“Are you able to define all the conditions
that create this problem?” I start with
questions to see if the developers are
fixing one piece of the problem at a time,
or if the testers understand the system
sufficiently to test thoroughly enough.

Measure How Much It Costs
You to Find and Fix Problems

One key measure is how long it takes
the project team to find and fix problems.
You’ve probably seen “industry standard
numbers” that show that it costs you one
unit to fix a problem in the requirements
phase, ten units to fix a problem in
design, one hundred units in code, 1,000
units in test, and 10,000 units in post-

26 BETTER SOFTWARE JANUARY 2006 www.StickyMinds.com

FFR and Closed Defects

Week

N
u

m
b

er
 C

lo
se

d
 D

ef
ec

ts

Figure 7: Fault feedback ratio compared to number of defects closed

Table 2: Measured cost to fix a defect for two projects

Project Phase/Cost Requirements Design Code Test Post-release

Project 1 (reactive for defects) Not measured Not measured 0.5 person-day 1 person-day 18 person-days

Project 2 (proactive for defects) 0.25 person-day 0.25 person-day 0.5 person-day 0.5 person-day 8 person-days

28 BETTER SOFTWARE JANUARY 2006 www.StickyMinds.com

know about multiple techniques
to test the product.

The longer a defect takes to fix, the
more careful we’ll have to be when
deciding what to fix just before release.

Understand if the Developers
and the Testers are Making
Progress with Defects

Almost everyone measures defect
trends. I’ve seen some intricate defect
trend charts, but my favorite chart shows
just three things: the number of new
defects found per week, the number of

closed defects per week, and the number
of remaining open defects per week (see
Figure 8).

I specifically do not chart defects by
priority. I find that the project team and
senior management become too willing to
play the promotion/demotion game when I
chart defects by priority. And the
developers have to read through all the
defects, even if they are supposedly a
lower priority, so I just count all the defects.

I count the number of remaining open
defects so I can see when the close rate
passes the find rate, enough so that the
number of remaining open defects starts
to decrease. I look for the knee of that
remaining open defects curve, knowing
that as the slope of the remaining
number of open defects goes negative,
the risk of release lessens.

Display Qualitative Data
It would be easy if all the project

data could be displayed on trend charts.
But you need a different kind of chart,

not the same as having data. When you
measure around your project pyramid,
you’re gathering data that not only will
explain where you are in this project
but also will help you plan for the next
project. {end}

Johanna Rothman, a regular Sticky-
Minds.com and Better Software magazine
columnist, enables managers, teams,
and organizations to become more
effective by applying her pragmatic
approaches to project management, risk
management, and people management.
You can contact Johanna at
jr@jrothman.com or by visiting her Web
site, www.jrothman.com.

especially when you’re trying to explain
the status of something. I’ve used
progress charts like the one in Table 3
when trying to explain the progress of
algorithm development, performance
scenarios, and testing.

Displaying Data
I try to be consistent in my charts. Red

is bad; green is good. Up is bad; down is
good. Bad and good are very judgmental
words, especially when applied to data.
After all, data just is. But you may not be
able to explain your data to everyone all
the time. In that case, it’s helpful if people
know how to read your charts. Tufte’s
The Visual Display of Quantitative
Information is a great resource, especially
when your charts will be read and
interpreted by other people.

In Data We Trust
Without data, you’re just another

person with just another opinion. And
while your opinion might be good, it’s

Defect Trends

Week

D
ef

ec
ts

Figure 8: Defect trend chart

Table 3: Progress charts can be used to explain status.

Area/Module/Feature Last Test Date State Next Planned Test

Module A 1/12, Build 37 Blocked. See Ann for details. Build 42

Module B 1/13, Build 40 Passed all regression tests. Recheck with Build 42

Module C 1/12, Build 38 Passed all regression tests.
Exploratory testing ongoing. Ongoing Checking

Module D 1/13, Build 39 Vijay and Dan working together on regression Build 41
tests. Major problems.

Module E 1/13, Build 40 Passed all regression tests. All fixes verified. Final Build
No more effort until final cycle.

Overall Status As of 1/13, 4 p.m. Approximately half done with planned Projected Last Build: 57
system testing.

Sticky
Notes

For more on the following topic, go to
www.StickyMinds.com/bettersoftware.

■ References

30 BETTER SOFTWARE JANUARY 2006 www.StickyMinds.com

Code with Character
Getting to Know Your Data Types

When I’m writing code, I like my types to
be straight shooters. I’m not into types
that are complicated or mysterious. It’s
simply too much work to figure out who
they are or what they might expect of
me. That’s why some of my favorite data
types are those that are willing to be
direct and honest with me.

Take my good buddy, Integer. An
Integer data type doesn’t pull any punches.
He tells you he will hold signed numeric
data, and that’s exactly what he does. You
try to give him a string or a date, and
he’ll laugh in your face. You’ll get
nothing unusual past him at compile

strays from the path once in a while.
Some time ago, back in the era of

COM, I knew a data type named
Variant. This guy was unlike any other
type I’d ever met. He was an integer, a
string, an array, and almost any other
type you’d ever met before. At first
glance, you couldn’t tell exactly what he
was. Despite his confused nature, Variant
was always good about telling you what
mood he was in. If he was feeling like an
Integer, he’d tell you outright. You had to
ask, but he’d be very quick to let you
know. So, even though you couldn’t
determine his state immediately, he gave

time. He’s purely a “what you see is
what you get” type. Integer is about as
trustworthy as they come.

The String type is a little harder to
read. He tells me he’s simply a handful of
characters that are supposed to represent
any old literal string and, for the most
part, that is what he is. But he can be
deceiving. One time I discovered him in
an application where he was holding
numbers and dates. It was very
disappointing. You think you know a
type, and then you find out he’s been
playing games with you. Still, String can
be a reliable data type. I think he just

www.StickyMinds.com JANUARY 2006 BETTER SOFTWARE 31

B
Y

TO
D

G
OLD IN

G

you very reliable means of finding out.
And for that I was grateful.

It wasn’t until this Object data type
rolled into town that I really started to
question data types. Object was unlike
any other type I had met before. He was
the chameleon data type that could

somehow be whatever he wanted to be.
It was as if he had looked at all the other
data types and asked if he could be
something more, something that broke
through all the type boundaries. This
‘60s, free-love spirit gave him a mystique
that was extremely enticing.

Naturally, this disposition also made
Object a very popular data type. Everyone
seemed to want to have him around.
Object was clearly the life of the party, and
pretty soon he became the “in vogue” data
type that developers just couldn’t resist.

Object’s appeal seemed rooted in
something deeper than pure sex appeal.
He really seemed to be adding value to
applications. If you wanted to write a
data container, for example, the Object
data type allowed you to create a general
container that could manage any type
that could be represented as an object.

Imagine how different the .NET Base
Class Library would look if there were
no Object data type. ArrayList,
Hashtable, and the like—all staples of
the BCL—are made possible by the
existence of this type.

Reaching Beyond
Data Containers

Given its nature, it was only logical to
expect that the popularity of Object
would reach beyond collections. The

allure of Object’s charms soon started
showing up in the signatures of everyday
interfaces, delegates, and so on. The end
result of all the Object euphoria was a
population of classes that often seemed
to make excessive use of this new type.
The class shown in Figure 1 represents an

example of objects gone wild.
After assembling this masterpiece,

many might be quick to show it off
to their friends. After all, we get excited
by the generality of our solutions. It’s
our nature. Reusability gets us feeling
like we’re really building something
more than just another simple, boring
class. And after creating this new
DataAccessManager class, some might
think they’ve built something special.

DataAccessManager represents the
Ginsu knife of data access managers. It
provides all the common CRUD (Create,
Read, Update, Delete) operations you’ll
need—in one clean, self-contained class
that can be reused across a whole host
of data object types. Of course, this was
all made possible by your easy-going,
type-friendly buddy, Object. Sure, you
could have pulled off something like this
with your own type hierarchy, but who
needs all that polymorphism? Let’s just
throw some object types into this interface,
and the DataAccessManager class will
be ready to conquer the world.

If you were the author of this class,
you’d probably be relatively comfortable
with how it works. However, if you’re
only a client of this class, you may not be
so enthusiastic about its interface. The
truth is: The interface of this class is
so general that it essentially tells you

nothing about what it expects or returns.
Consumers of this class would need a
pack of tarot cards and a decoder ring to
figure out the intent and type expectations
of these methods.

Let’s start by looking at all the
ArrayLists that show up here. What
does an ArrayList really tell you when
it’s included in an interface? ArrayList is
as mysterious and elusive as Object. All it
really says is: “Hey, here’s a collection of
some objects. You go figure out what
types I might contain.” The same could
be said for the other object types that
show up in the signature of this interface.

So where does that leave you as a
client of this class? Well, it basically turns
you into a hunter and gatherer. It forces
you to hunt through the existing code to
gather information about what types are
“really” valid for this interface. Does it
accept any object type? Do the objects
need to support any specific interfaces?

As you can see, all this generality
simply pushes responsibility and type
awareness out to the client. Consumers
of this class will now be forced to litter
their code with casts and dependencies
that could easily be broken by some small
change you might introduce into two
indirectly related pieces of code. And, to
top this off, you may not actually discover
that you’ve violated this dependency until
one of these casts fails at run time.

Imagine some relatively obscure, less
frequently exercised path of execution

32 BETTER SOFTWARE JANUARY 2006 www.StickyMinds.com

public class DataAccessManager {

public ArrayList GetDataObjects(DataType type) {}

public Hashtable GetIndexedCollection(DataType type) {}

public object GetDataObjectById(DataType type, object id) {}

public object AddDataObject(object dataObject) {}

public ArrayList DeleteDataObject(object id) {}

public bool UpdateDataObject(object dataObject) {}

}

The truth is:
The interface of this class is

so general that it essentially

tells you nothing about what

it expects or returns.

figure 1

that appears in your code and happens to
rely on one of these dependencies. It
might easily slide through QA and find
its way into production.

Even if you discount this entirely,
there’s still a fundamental problem with
the expressiveness of this interface. I don’t
really want to be vague in my interfaces if
I don’t have to. However, ArrayList
and Object and all these Object-related
mechanisms take me down the slippery
slope of vagueness; they all encourage me
to be cryptic about what I’m conveying to
my clients. That shouldn’t be the default
mode of operation for achieving generality.

Object is not exactly friendly to our old
value types. To be represented in an
ArrayList, for example, an integer data
type must go through the utterly humiliating
process of being boxed and treated like an
object type. It’s as if Integer’s identity and
purpose are being ignored in favor of the
popularity of Object. Somehow, all types
have to mimic Object’s behavior to fit in.
It’s like high school all over again.

Of course, this whole act of boxing and
un-boxing value types to make them
behave like Object adds overhead. If you’re
going to put, say, 10,000 value types into
an ArrayList, this overhead of boxing
and un-boxing will not be insignificant.

As you can imagine, all this talk about
casting, implied coupling, compromising
of expressiveness, and boxing suddenly
calls into question the true value of
Object. Perhaps this type, which has
represented himself as such a good friend,
isn’t really being so straightforward with
you after all. Perhaps he’s luring you
into a lifestyle that has downstream
impacts on the quality, maintainability,
expressiveness, and performance of your
code. Yeah, he’s good to have as an
encapsulating, polymorphic ally, but
maybe we shouldn’t be relying on him so
heavily and pervasively.

To top things off, all this focus on
Object is starting to make Integer, String,
and Double downright depressed. After
being there for you all those years, they
are beginning to feel a bit neglected. They
may not have been as glamorous as
Object, but they had appeal and clarity
that Object is simply not providing.

The key, then, is to find some way to

You’ll notice there is no type explicitly
associated with the type parameter T.
That’s the key point here. T itself is not
a placeholder for information—it is a
placeholder for a type. So, when you
declare this class, you’ll now be required
to supply a type as a parameter (referred
to as the type argument). That type
argument will be substituted for T
everywhere it appears in the declaration
of this class.

This same concept is applied to
a few of the methods in this class.
For example, GetDataObjectById()
includes the declaration of a <TId> type
parameter that will be used to define the
type of the Id object that is supplied
as an incoming parameter. This idea
is included to illustrate how this flavor
of parameterization extends beyond
classes. Methods, delegates, interfaces,
structs, and classes are all .NET

constructs that have been extended to
support parameterized types.

Now, at first blush, you might be
looking at this example and thinking:
How the heck does this represent a more
expressive interface? And, my response
would be: At this level this interface isn’t
more expressive or even more readable. I
could definitely see how some might
think all this new syntax muddies the
textual complexity of the class.

The real value shows up where it
should be, in the code that constructs and
consumes this class. Remember, the goal
of expressiveness is to improve the
client’s experience. We’re really trying to
achieve clarity and safety for our clients.
Making the internals of this class better is

strike a balance between the generality
and reusability of objects while retaining
the expressiveness and safety of these
traditional, more specific types. It should
be possible to be as open and flexible as
Object, while remaining as practical and
direct as Integer. I want all my types to
simply get along and play nicely together.
That shouldn’t be too much to expect.

Mr. Generics
to the Rescue

Fortunately, with the release of Visual
Studio 2005, you have a new ally to
combat these type obscurities. Your
new-found friend, Mr. Generics, is going
to step in and save the day. With generics
you’ll be able to abandon the idea of
using objects as a least common
denominator type and replace those
objects with the exact types by allowing
your types to be parameterized. So, much

like you’d parameterize a method, your
classes are now extended with the ability
to accept type parameters that represent
the exact type being managed.

As an example, I’ve modified our
object-laden DataAccessManager
class to accept a type parameter that will
be the exact type being managed by the
class (see Figure 2). This type parameter
is then sprinkled throughout the
methods of the class. I’ve made a few of
the methods generic, adding parameters
that will be used to determine the types
of their incoming data .

Here, DataAccessManager has
added a <T> to its declaration. This pa-
rameter should be viewed like any other
parameter declaration, with one exception.

www.StickyMinds.com JANUARY 2006 BETTER SOFTWARE 33

public class DataAccessManager <T> {

public List<T> GetDataObjects() {}

public Dictionary<long, T> GetIndexedCollection() {}

public T GetDataObjectById<TId>(TId id) {}

public T AddDataObject(T dataObject) {}

public List<T> DeleteDataObject<TId>(TId id) {}

public bool UpdateDataObject(T dataObject) {}

}

figure 2

a nice side effect, but our real gains in
maintainability and type safety are going
to be achieved via improvements in the
client’s experience.

In Figure 3 I’ve provided a very basic
example of some client code that exercises
the non-generic DataAccessManager
class. This example adds some
Customers to the database and follows
this up with calls to GetDataObjects()
and GetDataObjectById(). In the
context of this simple example, this all
seems perfectly harmless. The real problem
is that, in the real world, the calls to add
items to the database and the calls that
retrieve, update, or delete data are
typically separated in your code. In fact,

Overall, you may not find much
wrong with this code. And, in the
pre-generic era, we’ve all had to write
code like this. However, now that we
have generics, we should be much more
critical of code of this nature. We
shouldn’t just assume that it’s acceptable
to make these compromises in type safety.

That’s what’s so nice about the generic
version of the DataAccessManager
class. There’s nothing ambiguous about
its interface. When I declare an instance
of DataAccessManager<Customer>
(in Figure 4), I’ve told my clients
precisely what data type (in this case,
Customer) will be acceptable for that
instance, and the compiler will enforce

it’s possible they could live in very
different areas of your code.

So, the cast and the general references
to the Customer type that appear here
are creating a series of implied contracts
between the client who added the items
and the code that is extracting them. It
assumes, for example, that the cast
required when fetching customers from
the collection will, by default, succeed.
To be honest, the code really has to
make this assumption. At the same time,
there’s nothing about the interface of
the DataAccessManager class that
would have prevented me from adding
Dog objects (or any other valid Object
type) to this collection.

34 BETTER SOFTWARE JANUARY 2006 www.StickyMinds.com

DataAccessManager mgr = new DataAccessManager();

mgr.AddDataObject(new Customer(123));

mgr.AddDataObject(new Customer(321));

ArrayList customers = mgr.GetDataObjects(DataType.Customer);

for (int idx = 0; idx < customers.Count; idx++) {

Customer cust1 = (Customer)customers[idx];

}

long id = 123;

Customer cust2 = (Customer)mgr.GetDataObjectById(DataType.Customer, id);

DataAccessManager<Customer> mgr = new DataAccessManager<Customer>();

mgr.AddDataObject(new Customer(123));

mgr.AddDataObject(new Customer(321));

List<Customer> customers = mgr.GetDataObjects();

for (int idx = 0; idx < customers.Count; idx++) {

Customer cust1 = customers[idx];

}

long id = 123;

Customer cust2 = mgr.GetDataObjectById(id);figure 4

figure 3

that contract. If I
try to add a Dog
object to that
instance, the com-
piler will catch

this and throw
an error.

Y o u ’ l l
also notice
that the
casts are
g o n e
from my
code. My

call to GetDataObjects() now
returns a List<Customers> type,
which tells me that list can only contain
Customer objects. And, as the code
iterates over this collection, it’s not
forced to cast each item to a Customer
type. The expressiveness and safety of
this code are at the heart of what generics
are trying to enable.

As an added bonus, you’ll discover
that the parameterization of your types
allows you to overcome the boxing
performance issues described earlier.

www.StickyMinds.com JANUARY 2006 BETTER SOFTWARE 35

You now can pass value type arguments
to your generic types without fear that
they’ll be boxed behind the scenes. The
.NET generics implementation went out
of its way to be sure that its generic
types would be able to support generics
in the Common Language Runtime
(CLR) and, as a result, the CLR
can manage value type arguments
without having to coerce them into
being objects.

Where do generics leave us
regarding our relationship with our data
types? At a minimum, it seems
that generics allow you to have more
meaningful, more trusting, more type-
safe interactions with your data types.
The obscurity and mystery of the
Object data type should no longer be an
issue. This doesn’t mean Object doesn’t
have its place. With generics, .NET
programmers can contain some of
Object’s desire to find its way into
places where it doesn’t belong. It’s just
going to have to get used to the
idea that it’s no longer the center of
attention. {end}

Tod Golding is the founder of Blue
Puma Software, a technical consulting
company that provides software training,
mentoring, and development services.
He has twenty years of experience as a
software developer, lead architect, and
development manager for organizations
engaged in the delivery of large-scale
commercial and internal solutions.
Tod is the author of Professional .NET
2.0 Generics and was a contributing
author for the XML Programming
Bible. Tod can be contacted at
tod@bluepumasoftware.com.

STARTING IN

THE FEBRUARY ISSUE,

TOD GOLDING

WILL BEGIN WRITING

OUR CODE CRAFT COLUMN.

The beginning of a new year is a good
time to take stock of career goals and
accomplishments. It’s a time when many
people make a conscious decision to
“Make this year the best one yet!” or
move on to greener pastures. Whatever
your workplace philosophy heading into
2006, you should find value in the results
of our annual salary survey. How do
your employment specifics compare to
those of your peers? Are you ahead of the
curve or trailing the pack? Living the
dream or waking up in a cold sweat?
Read on to find out how your job measures
up to the industry average.

Getting to Know You
Demographically the survey results

are very similar to last year’s. The majority
of our survey respondents (76%) work in
the United States and Canada, but as
always, it’s evident that the industry is
active globally. Forty percent of workers

Putting Down Roots
So what is it that you do? Well,

an overwhelming majority (86%) of
respondents describe their job function
as test/QA, 6% are employed in
development, and slightly more than
6% are working in IS/IT.

Nearly half of you (47%) have been
with the same employer for one to five
years, and 21% are fairly new to their
jobs with less than a year under
their belts. One to five years seems to be
long enough for a lot of readers, as 60%
report that as the length of time they
worked for previous employers.

Surprisingly, almost all of you
are working a standard, full time,
forty-something hours a week job.
Despite all of the communication
devices and options available, very
few people are working remotely or
as part of a distributed team.

are in their thirties, and the gender ratio
is still neck and neck.

One interesting change from last year
is the increase in the years spent working
in the industry. Obviously a year later we
would expect more of our readers to
report more experience, but the number
of respondents who have been in the
testing/QA industry for one to five years
dropped from 36% in 2004 to 30% in
2005. This data seems to support recent
studies that show fewer students are
choosing to pursue careers in the
software engineering industry.

Cracking the Books
Education trends have remained

constant. A bachelor’s degree is still the
most prevalent educational level (51%),
and CS/IS remains the most popular field
(31%). Other areas of study include
engineering (20%), business (14%),
liberal arts (10%), and mathematics (4%).

36 BETTER SOFTWARE JANUARY 2006 www.StickyMinds.com

Career Development

A look at employment trends in 2005
The Better Software Magazine/StickyMinds.com Salary Survey
by Heather Shanholtzer

69%

7% 5% 4%
8%

Country

Percent

0

10

20

30

40

50

60

70

80

7%

US Canada India UK/Ireland Europe Other

46% 54% Male
Female

Gender

29%

36%

5%

30%

Less than 1 year
1 to 5 years

6 to 10 years

More than 10 years

Years of Experience in Testing/QA

Career Development

www.StickyMinds.com JANUARY 2006 BETTER SOFTWARE 37

49%

33%

5% 3% 3% 0%
4% 2% 1%

St
aff

 le
ve

l te
st/

QA

M
an

ag
em

en
t le

ve
l te

st/
QA

Di
rec

tor
 le

ve
l te

st/
QA

St
aff

 le
ve

l d
ev

elo
pm

en
t

M
an

ag
em

en
t le

ve
l d

ev
elo

pm
en

t

Di
rec

tor
 le

ve
l d

ev
elo

pm
en

t

St
aff

 le
ve

l IS
/IT

M
an

ag
em

en
t le

ve
l IS

/IT

Di
rec

tor
 le

ve
l IS

/IT

Percent

0.1

0.2

0.3

0.4

0.5

0.6

Job Functions

19%

81%

Pay Raises in 2005

No
Yes

30%

14%

23%

6%

12%

7%

3%

20%

QA
I

AS
Q

ISE
B

Br
ain

be
nc

h

M
icr

os
oft

M
erc

ury

Br
itis

h C
om

pu
ter

 So
cie

ty

Ot
he

r

5

10

15

20

25

30

35

Percent

Certification by Organization

28%

20%

1%

51%

Doctoral
Bachelors

Some college

Masters

Education

24%

76% No
Yes

Certification

Respondents could select more than one organization.

38 BETTER SOFTWARE JANUARY 2006 www.StickyMinds.com

Career Development

Making It Worthwhile
As in most industries, job title and

function determine the pay scale. In the
world of software engineering, we can
break it down to many levels. Forty-
three percent of Test/QA staff report an
annual salary of between $51,000 and
$70,000. Twenty-five percent of the
Test/QA managers and 70% of Test/QA
directors who responded are bringing
in $91,000 to more than $100,000
each year.

In the development realm, salaries
for staff-level workers are pretty evenly
distributed across the pay scale. The
managers’ salaries vary widely, with
23% claiming less than $30,000 per
year and 20% bringing in more than
$100,000. Incidentally, 100% of devel-
opment directors report a more than
$100,000 annual income.

As for IS/IT, 50% of staff members
make between $41,000 and $60,000
each year. Managers report salaries
across the pay scale, and all of the
IS/IT directors are earning more than
$51,000 annually.

While some might say money makes
the world go ‘round, others look for
more than dollar signs when assessing
the value of their jobs. Fifty-nine
percent of you reported base pay as the
most important thing about your jobs,
but barely lagging behind came less
tangible perks, such as job stability
(48%), the challenge of the job
(46%), and knowing that your
opinions matter (43%).

More than half of respondents received
a pay raise of up to 5%, and 21% of
you received an increase of 5% to 10%.
Eighty-nine percent of workers are opti-
mistic that they will receive a pay in-
crease of some sort in the twelve months
following the survey.

In 2005 only 25% of you experienced
layoffs in your departments; that’s down
from 32% in 2004. However, more
people reported an increased uncertainty
that layoffs will occur in the months
following the survey.

Fitting In
The bulk of survey respondents

(21%) work in the commercial software

arena, but many work in such
varied areas as manufactur-
ing, banking, health care, and
utilities. Almost 50% of you
work for companies with
more than 1,000 employees.

Tester-developer relation-
ships seem to vary quite a bit
throughout the industry with
the exception of how testing
and development functions
are arranged. Seventy-three
percent of you work for a
company where testing and
development are parallel,
while 20% of responders
report that testers report to
development in their organi-
zations. Forty percent report a
tester-to-developer ratio of
1:2 to 1:4, and many of you
work for companies with more
than one hundred developers
and/or fewer than ten testers.

Adding It Up
As always, it’s hard to predict

what all of this means. The
industry appears stable; there
were no wild fluctuations
between the 2004 and 2005
surveys. But compared to the
industry’s heyday, salaries are
still lagging and layoffs are
more prevalent than we’d
like. Maybe this stability is an
indication of good things to
come. Check back next year,
when we’ll revisit employment
trends and share our readers’
insight on the state of the
technology job market. {end}

Percent

0

10

20

30

40

50

60

70

80

90

100

55%

37%

0%

27%
33%

0%

18%

30%

100%

$30,000–$60,000 $61,000–$90,000

Development

More than $90,000

33%

17%

Percent

0

10

20

30

40

50

60

70

80

90

100

60%

25%

38%
42%

33%

2%

50%

$30,000–$60,000 $61,000–$90,000

IS/IT

More than $90,000

Percent

0

10

20

30

40

50

60

70

80

90

100

56%

24%

5%

39%

51%

24%

5%

25%

71%

$30,000–$60,000 $61,000–$90,000

Test/QA

More than $90,000

The industry appears stable;

there were no wild fluctuations

between the 2004 and 2005

surveys.

A Look at Administrator’s Pak
by Winternals
by Marnie Hutcheson

It’s time that application testers got some
good tools! I know, I know. You’ve got
the “big automated Kahuna” on your
shelf. I’m here to tell you about some less
grand—but seriously useful—tools that
you may want in your pocket.

Administrator’s Pak by Winternals is
a suite of ten utilities that allows you to
repair unbootable or locked-out systems,
restore lost data, and remove malware
from infected systems while the system is
safely offline. More important to software
testers, though, Administrator’s Pak will
help debug and repair all sorts of less
serious problems like configuration,
application, and driver issues. You don’t
have to be a super tech to use these tools,
but they definitely identify stuff that you
can’t find with the naked eye—and that
makes you look really good.

Some of the Administrator’s Pak tools
work only locally and others work both
locally and remotely. For example, you
can run Administrator’s Pak on a healthy
machine where it is installed, and you

spending endless hours debugging the
problem yourself, the Crash Analyzer
Wizard automatically debugs your system
using the latest dump and the system’s
own environment; then it tells you “what”
is probably causing your problem. The
whole process takes only a few minutes.

I ran the Crash Analyzer Wizard on
three different machines that had all
experienced failures in the past twelve
months. Crash Analyzer told us that one
had a faulty driver, one had a bad hot
patch, and one had been hacked. Crash
Analyzer correctly identified the source
of each crash. The first took six minutes
to identify, and the others took only
seconds. In the machine that had been
hacked, Crash Analyzer caught a bad
system file that we had missed. The
Crash Analyzer Wizard more than paid
for the Administrator’s Pak by saving us
time we would have spent manually
debugging these crashes.

When our test PC took a dump last
week, everybody wanted to be the one
with the privilege of running Crash
Analyzer. So all the testers gathered
around the machine while we booted it
up and ran Crash Analyzer. Crash
Analyzer took only a few minutes to find
the problem. Sure enough, it was a new
.dll in the application we were testing
that probably caused the problem. We
attached the dump and the Crash
Analyzer report to the bug log. The
developers were very pleased. Instead of
spending hours trying to recreate the
problem, they just fixed it.

Restore a Locked Out,
Damaged, Dead, or
Dangerous System

When it comes to restoring a system,
you have two main options. The first is
to restore the system locally by booting
the machine into the ERD Commander
2005 environment so you can work on it
directly. The second option is to boot the

will see the Navigator shown in Figure 1.
From here you can work on the local
machine to restore files with FileRestore;
monitor and modify Active Directory
traffic, objects, and properties using
Insight for AD and AD Explorer; and use
TCPView Pro to view what applications
are connected to which ports. All of these
tools can be helpful in identifying the
causes of application and service failures
resulting from AD configuration,
corruption, executable errors, and
communication issues.

You can monitor and restore files and
registry activity on both the local
machine and on a remote machine. This
is very useful in diagnosing compatibility
issues, such as why a certain application
isn’t running on a certain system. And
you can run the Crash Analyzer Wizard

on either the local or remote machine.
The Crash Analyzer tool is unique. It

uses Microsoft debugging tools and
Microsoft’s own symbol files to analyze
both events and executables. Instead of

Figure 1: Administrator’s Pak Navigator

Tool Look

www.StickyMinds.com JANUARY 2006 BETTER SOFTWARE 39

40 BETTER SOFTWARE JANUARY 2006 www.StickyMinds.com

Tool Look

machine as a remote recover client and
use the Remote Recover feature on the
host (online) to recover it.

In either case, the CD Build Wizard
will help ensure that you have everything
you need on your Administrator’s Pak
recovery boot disk, including ERD
Commander 2005 and any PC specific
drivers you may need (i.e., SCSI, network
adapter, etc.).

Since the Crash Analyzer Wizard uses
the Microsoft debugging tools, you will
want to have the latest version of them
on the CD. The CD Build Wizard gives
you a link to their Microsoft Download
home and prompts you for their location
on your system. You can also include
any other programs you wish. Once
you have selected everything you
want to include on the CD, the wizard
creates the image. If your CD burner is
compatible, it will even burn the CD for
you on the spot.

Local Recover
If you are performing a local recovery,

you boot up to ERD Commander 2005
which looks a lot like the Windows
desktop (see Figure 2). In fact, all the
tools in the Administrator’s Pak look and
feel so much like Windows that it’s easy
to forget that they are not.

The Start menu is stocked with the tools

Once the damaged system is booted
using the Remote Recover CD or PXE, it
will be a remote recover client waiting to
connect with the host. The Remote
Recover host broadcasts a query across the
network or to a specific IP address. When
the client responds, it appears in the Remote
Recover host display. You simply connect to
the client, and a list of its disks is displayed
in the host console. Select the disks you
want to work with and interact with them
just as though they are on your local host
machine. You can drag and drop files on
and off the system, use the virus software
on your local host machine to remove
viruses, diagnose system and network
issues, and use file restore.

Some Things to Know
Since your CD effectively becomes the

C drive, you can’t eject the Boot CD
while the machine is running. You have
to remove it either by pressing the eject
button just as the system is starting up or
by using a paper clip while the system is
turned off—it’s a small price to pay.

The Administrator’s Pak is too large
for a download except in extreme cases,
so plan on buying the CD. The emergency
version of ERD Commander 2005 is
available online for immediate download,
but it does not include the Crash Analyzer
Wizard or Disk Commander. {end}

Price: Administrator’s Pak: $1199 for
a single user license plus $240 annual
product assurance (free 30-day
evaluation CD available)
ERD Commander 2005 Emergency

Download: $299 for Servers and $149 for
Workstations (http://www.winternals.com)

Marnie Hutcheson has been building Web-
based business solutions by breaking software
since 1987 when she helped launch online
shopping at Prodigy Services Company.
A specialist in user interface development
and human factors, Marnie writes and
speaks on a variety of technical topics. She
can be reached at Marnie@ideva.com.

that you need to figure out what happened
and fix it while the crashing system is inert.
The Administrative tools let you view the
autorun list, Disk Management, Event logs,
RegEdit, Service and Driver Manager, and
system information including hot fix history.
Networking tools give you file sharing, map
network drive, and TCP/IP configuration
information for the remote recover machine.

System Tools gives you the real heavy
hitters: Crash Analyzer, Disk Commander,
Disk Wipe, File Restore, Hotfix Uninstall,
Locksmith, System Compare, System File
Repair, and System Restore.

You get all the essential utilities:
Explorer, a browser, Notepad, search, and
a command line console. There is even a
solution wizard that guides you through
the most common types of recovery:
system won’t boot, data needs to be
salvaged, lost password, and other problems.

Remote Recover
If you plan to use the Remote Recover

capability, you have two options. You can
either use a Remote Recover Bootable CD
that you create using the CD Create Wizard
or, if your system supports it, you can use a
Pre-Boot Execution Environment (PXE)
that allows a client to boot across the
network from a host system. Either way,
the machine does not need any installed
operating system for the recovery to proceed.

Figure 2: ERD Commander 2005

Got any cool tools
you want to share?

Contact us at
editors@BetterSoftware.com

Product Announcements

Borland Announces
Enhanced Requirements
Management System

CUPERTINO, CA—Borland Software
Corporation announces Release 2.0 of its
requirements management system,
CaliberRM 2005. The updated release is
designed to increase communication,
productivity, and usability when
managing requirements across the
application lifecycle.

New capabilities include improved
linking and traceability features to more
extensively connect requirements with the
rest of the application lifecycle. It also
includes added secure sockets layer (SSL)
support for enhanced security, as well as
new enterprise-class licensing options to
help improve internal tracking, reporting,
and auditing across teams.

“Change is an inevitable fact that
affects all phases of software delivery,”
said Marc Brown, director of product
solutions at Borland. “A comprehensive
requirements management system can
help IT organizations assess the impact of
change, communicate that impact across
teams, and respond more efficiently to
those changes.”

For more detailed information, visit
www.borland.com.

Quest Extends Toad
Database Development
Environment

DALLAS, TX—Quest Software
announces version 1.0 of Toad
for SQL Server, an easy-to-use develop-
ment environment that increases the
productivity of database developers
and administrators.

“The complexity of enterprise-class
databases, including SQL Server, requires
advanced tools so that developers can
quickly build optimized SQL code and
DBAs can manage tasks across multiple
servers with greater efficiency,” said Carl
Olofson, research director for marketing
intelligence provider IDC. “Tools with a
familiar interface can also be very useful
for experienced DBAs who are new to
SQL Server.”

With Toad for SQL Server, database
professionals can quickly create and
execute queries, automate database

object management, and develop highly
optimized SQL code more efficiently.
Administration capabilities allow users to
manage large projects, integrate with ver-
sion control software, manage users and
database security, and import/export data.

To learn more, visit www.quest.com/
sqlserver.

Solstice Software Expands
Support for SOA and
Integration Projects

WILMINGTON, DE—Solstice Soft-
ware announces the availability of Integra
Enterprise 5.0, the company’s enterprise-
class integration testing suite. Version 5.0
provides process-level visibility and
validation, enhanced security testing, and
expanded support for industry-leading
enterprise protocols.

“We’ve automated the dirty work, so
our clients can save time, reduce
resources, and improve quality,” said
Lori Gipp, vice president of marketing at
Solstice. “Integra Enterprise tells testers
the path through the system, component
by component, then helps testers pinpoint
precisely where the
problem is in the
process and which
data, field by field, is
creating the problem—
in minutes, not days.”

Integration intro-
duces layers of com-
plexity in order to im-
prove business processes.
Integra Enterprise
works through those
layers in two simple
steps: laying out mes-
sage paths and corre-
lating messages along
workflows; and record-
ing both the message
wrapper and message
content to diagnose
the source of the prob-
lem in the flow.

By penetrating the
integration layers,
Solstice streamlines
diagnosis and gives
testers control and a
repeatable integration

validation environment. A central reposi-
tory, user security, and an XP-like inter-
face promote usability across the team
and re-usability of assets.

To find out more about Integra
Enterprise, visit www.solsticesoftware.com.

CollabNet Launches
Enterprise Edition 4.0

BRISBANE, CA—CollabNet launches
the next generation of the company’s
flagship software development platform,
CollabNet Enterprise Edition 4.0. The
new version features the CollabNet
Application Lifecycle Manager (ALM), a
codified yet flexible set of process
templates containing content, artifacts,
and tools that guide project members
through the application lifecycle to help
organizations overcome their distributed
software development challenges.

The ALM enables project managers to
select and customize a choice of
pre-configured process templates and
address a broad range of software

(Continued on page 42)

www.StickyMinds.com JANUARY 2006 BETTER SOFTWARE 41

42 BETTER SOFTWARE JANUARY 2006 www.StickyMinds.com

crossed several departments—HR, IT,
security—each of which serves many
customers and evens out the ebb and
flow of work during the day by holding
work in queues. So, perhaps an hour
was spent physically setting up the user
ID, and the rest of the eighty hours was
spent in queuing as the request moved
between departments.

What can we do about this? The first
step is to think about the dull knives in
your organization. Think about how
things flow—you may not even realize
you have a problem. Ask staff members
what is blocking the flow, ask them
how to fix it, and then give people
permission to fix it. Wherever you sit in
the organization chart, have lunch with
your internal and external customers
and your suppliers. Ask them where it
hurts and experiment with small
changes to make things better. Invent a
new role—the “flow master”—someone
whose job it is to coach people on
how to see the flow and the blockages.
And don’t forget to sharpen your tools.
Often. {end}

Clarke Ching is a New Zealander who
now lives in Scotland. He is a passionate
advocate of Agile software development
and is chairman of the special interest
group Agile Scotland, which meets
monthly in Edinburgh. Clarke has an
MBA specializing in technology man-
agement and is a senior consultant with
Vision Consulting.

The Last Word
(Continued from page 44)

development styles and business processes.
The Baseline Process Template can be
utilized on a project-by-project basis or
enforced company-wide to drive adherence
to specific processes. Process templates
enable CIOs and their software
development teams to customize and
define consistent processes for particular
projects by allowing organizations to
codify all lifecycle phases. The ALM also
provides CIOs and their project managers
global visibility to measure and
subsequently improve their distributed
software development processes.

For more information, visit us at
www.collab.net.

McCabe Releases McCabe
CM 3.1 with StreamCM

WARWICK, RI—McCabe & Associates
announces the release of McCabe
CM 3.1 with StreamCM. Its selective
migration techniques enable the removal
of specific changes or the promotion of a
change from among those waiting,
allowing the change to be fast-tracked
through test to release.

Version 3.1 includes StreamCM, a
Java client developed for ease of
use. Its powerful visualization of the
change-based application lifecycle
allows development teams to drill down
to the lowest level of the application history,
so that information about change history
is never lost.

“As with previous versions of
McCabe CM, users will realize a signifi-
cantly lower administrator-to-developer
ratio than they would with other CM
solutions, translating into a much lower
cost of ownership and flexible, accelerated
release schedules,” said Barbara Dumas,
McCabe director of SCM solutions.

Learn more at www.mccabe.com.

TechExcel Delivers Solution
for Managing the Application
Development Lifecycle

LAFAYETTE, CA—TechExcel, a leading
developer of issue and process management
solutions, announces the general avail-
ability of DevTrack 6.0. The latest ver-
sion of DevTrack enhances the defect-
and project-tracking tool's power to
manage and automate the application

!
Have the Last Word!

If you have a point to make
or a side to take on issues and trends

that affect the industry,
we want to hear from you.

We are looking for insightful,
thought-provoking commentary

for possible use as a Last Word column.

Please send your submission to
editors@bettersoftware.com.

You will be notified if you are being
considered for publication.

development lifecycle through extended
workflow functionality, robust scalability,
and seamless integration with IT service
and test management solutions.

“DevTrack has been an effective and
powerful product for many years,” said
Tieren Zhou, president and CEO of
TechExcel. “Some of our largest DevTrack
customers are creating over 15,000 issues
per week, with thousands of team members
working twenty-four hours a day on our
system. Providing these customers with
fast performance and stability is the focus of
the DevTrack 6.0 release. We have designed
DevTrack 6.0 specifically to meet such
scalability needs, while retaining the ease of
configuration and ease of use that DevTrack
has always been known for.”

The DevTrack 6.0 graphical workflow
allows users to draw shapes and connectors
that represent states and transitions. Using
the diagramming tools, users can define
every aspect of a workflow rule—next actions
for each status state, application owners
for each status state, who can perform
actions, and invisible/read-only/mandatory
fields for each workflow action and status
state—and immediately publish the new
workflow settings to a live system. DevTrack
6.0 also offers users the ability to create
multiple workflows to cover the full
spectrum of development work items,
defects, and change requests.

DevTrack 6.0 also introduces two major
performance enhancements designed
specifically for large development teams.
For teams with thousands of users and
millions of DevTrack issues, two operations
could slow down performance: generating
large reports and performing extensive
keyword searching against multiple
memo fields. DevTrack now supports
Web server load balancing and dedicated
reporting servers, which allow DevTrack
customers to dedicate a single Web server
or a group of servers for reporting
purposes and thus remove possible
performance impact to normal operations
when generating large reports. DevTrack
6.0 also introduces the DevTrack Search
Engine to deliver instantaneous keyword
search results, even when DevTrack
databases contain millions of issues.

For more complete information, visit
www.techexcel.com.

Product Announcements
(Continued from page 41)

Index to Advertisers

AutomatedQA www.automatedqa.com Inside Back Cover

Bank of America www.bankofamerica.com/careers 43

iTKO www.iTKO.com 13

LogiGear www.logigear.com 41

Mercury www.mercury.com 5

Parasoft www.parasoft.com/insure 1

RadView www.radview.com 7

Rally www.rallydev.com/bsm 20

Seapine Software www.seapine.com 2

Segue www.segue.com Back Cover

Software Quality Engineering PowerPass www.sqe.com 29

Software Quality Engineering STF www.sqe.com 35

Software Quality Engineering Training www.sqe.com 21

Software Quality Solutions www.sqs.com Inside Front Cover

STAREAST 2006 www.sqe.com/stareast 9

TechExcel www.techexcel.com 27

Display Advertising

Shae Young syoung@sqe.com

All Other Inquiries

info@bettersoftware.com

Better Software (USPS: 019-578, ISSN: 1532-3579) is
published eleven times per year. Subscription rate
is US $75 per year. A US $35 shipping charge is
incurred for all non-US addresses. Payments to
Software Quality Engineering must be made
in US funds drawn from a US bank. For more
information, contact info@bettersoftware.com
or call (800) 450-7854. Back issues may be
purchased for $15 per issue (plus shipping).
Volume discounts available.

Entire contents © 2006 by Software Quality
Engineering (330 Corporate Way, Suite 300, Orange
Park, FL 32073), unless otherwise noted on specific
articles. The opinions expressed within the articles
and contents herein do not necessarily express
those of the publisher (Software Quality Engineering).
All rights reserved. No material in this publication
may be reproduced in any form without permission.
Reprints of individual articles available. Call for details.

Periodicals Postage paid in Orange Park, FL,
and other mailing offices. POSTMASTER: Send
address changes to Better Software,
330 Corporate Way, Suite 300, Orange Park, FL 32073,
info@bettersoftware.com.

M A R K YO U R C A L E N DA R

February 13-16, 2006
The 5th IEEE International Conference on
COTS-Based Software Systems
Hilton in Walt Disney World Resort
Orlando, Florida
http://www.iccbss.org/2006

February 13-17, 2006
RSA Conference 2006
McEnery Convention Center
San Jose, California
http://2006.rsaconference.com

February 14-16, 2006
IASTED International Conference on
Software Engineering (SE 2006)
Congress Innsbruck
Innsbruck, Austria
http://www.iasted.org/conferences/2006/Innsbruck/se.htm

www.StickyMinds.com JANUARY 2006 BETTER SOFTWARE 43

44 BETTER SOFTWARE JANUARY 2006 www.StickyMinds.com

The Last Word

Working with Dull Knives
by Clarke Ching

A few years ago I attended a sushi
preparation demonstration given by a
local Japanese chef who was promoting
his new shop and restaurant. Sushi was
uncommon where I lived, and the room
was full of gastronomes eager to try the
new delicacies. The chef swiftly and
seemingly effortlessly prepared dish after
stunning dish, deftly slicing fish and
vegetables, then wrapping them with
rice and seaweed or serving the fish on
its own.

When he had finished, he asked if
there were any questions. When was he
opening his restaurant? Next month.
Where do we buy the ingredients he’d
been using? From his little shop, of
course. Where did he buy his fish? He
went to the local fish markets, but that
meant getting out of bed at 5 a.m., so he
recommended a good local fishmonger. I
asked him how did he keep his knife so
obviously sharp? He frowned, glanced
down at his knife for a moment, then up
again, before looking me directly in the
eye. His face suggested that this was the
stupidest question he had ever heard. “I
sharpen it,” he said. “Often.”

I was reminded of his answer a few
weeks ago when I started a new consulting
gig. It took just over a week for my new
user ID to be set up and another week to
get it set up correctly, despite its taking,
presumably, less than an hour’s cumulative
effort. I made do with my laptop, but I had
no access to email or to the organization’s
software applications and data. I’ve
asked around, and this is a common
occurrence. In fact, during my career I’ve
had only one job where I had the correct
access set up to start working productively
on my first day—but, sadly, they had no
work for me to do for the first six weeks.

Contrast my experiences with those of
the sushi chef. He not only brings his
skill and experience to the job, but he
also brings his own knives. His productivity,
his safety, and his sense of professionalism
depend on the quality of his tools, so he
keeps them sharp and he doesn’t allow

spontaneously as needed, we now had to
book them two or three weeks in
advance. We ended up having noisy
meetings around our desks, which
distracted others from their work. Other
times we sneaked out to meet in local cof-
fee shops—where we effectively paid for
the company’s meeting space out of our
own pockets through the inflated prices of
the coffee we felt obliged to drink.

When I was younger, I blamed these
problems on stupid middle managers. I
was wrong. The problem is that no one
manages the flow of work through the
organization at an operational level.
True, senior management is trying to
manage the flow from a high level, by
setting up a hierarchy of specialized
departments—the organization chart.
Unfortunately, the work, money, and
commitments flow horizontally—not
hierarchically—across the organization.
Each department tends to optimize its
own performance against its own targets
and within its own budget, and it’s often
done at the expense of other departments.

For example, my user ID request

anyone near them. Like the chef, our
productivity and sense of professionalism
are dependent on the skill and experience
we bring to the job and the tools we use.
But unlike the chef, we rarely have
control over the quality of our tools.

For some reason, our employers and
clients are content to pay us our high
salaries but they give us dull knives with
which to work. I have fond memories of
my first job—we read the newspaper and
did the crossword puzzle during the
half-hour waits for mainframe compiles
to finish. At another job, I was told off
for sticking our data model on the wall
for all to see and discuss—because it was
against company policy. The organization
seemed to value clear walls more than it
valued productive workers.

On yet another job, the facilities
department cleverly squeezed 30 percent
more staff into the same office space by
using flat screen monitors and smaller
desks. Unfortunately, facilities didn’t
increase the number of meeting rooms—
a basic tool for most knowledge workers.
Instead of using the meeting rooms

Clarke Ching says you should sharpen your tools often.

(Continued on page 42)

