
Totally Data-Driven Automated
Testing

A White Paper

By

Keith Zambelich

Sr. Software Quality Assurance Analyst

Automated Testing Evangelist

Professional History and Credentials:

I have been involved in Software Testing and Software Quality
Assurance for the past 15 years, and have tested a number of
software applications on a variety of platforms. I have also
been involved in some form of automated testing or another
during this period.

At First Interstate Services Corporation, I was involved in
testing Electronic Funds Transfer (EFT) applications written in
ACP/TPF. Here I developed the "Transaction Simulation Test
Facility", which allowed testers to simulate transactions to and
from all of First Interstate’s connections (VISA, Cirrus, Great
Western, etc.). This consisted of over 400 programs written in
ACP/TPF, and enabled testers to verify all application
modifications, including the front-end switching (Tandem)
software.

At the Pacific Stock Exchange, I was in charge of testing all
Exchange software, including their new PCOAST trading
system. I developed and implemented a method of simulating
Broker transactions, eliminating the need for live testing with
Brokers. This resulted in a greatly improved implementation
success rate.

During my employment at Omnikron Systems, Inc. (a software
consulting company based in Calabasas, CA) I successfully
implemented Automated Testing solutions using Mercury

Interactive’s WinRunner® test tool for a variety of companies,
including Transamerica Financial Services, J. D. Edwards Co.,
IBM Canada, PacifiCare Health Systems, and Automated Data
Processing (ADP). While at Omnikron Systems, I developed a
totally data-driven method of automated testing that can be
applied to any automated testing tool that allows scripting.

I have been certified as a WinRunner® Product Specialist (CPS)
by Mercury Interactive, Inc.

Introduction:

The case for automating the Software Testing Process has been
made repeatedly and convincingly by numerous testing
professionals. Most people involved in the testing of software
will agree that the automation of the testing process is not only
desirable, but in fact is a necessity given the demands of the
current market.

A number of Automated Test Tools have been developed for
GUI-based applications as well as Mainframe applications, and
several of these are quite good inasmuch as they provide the
user with the basic tools required to automate their testing
process. Increasingly, however, we have seen companies
purchase these tools, only to realize that implementing a cost-
effective automated testing solution is far more difficult than it
appears. We often hear something like "It looked so easy when
the tool vendor (salesperson) did it, but my people couldn’t get
it to work.",or, "We spent 6 months trying to implement this
tool effectively, but we still have to do most of our testing
manually.", or, "It takes too long to get everything working
properly. It takes less time just to manually test.". The end
result, all too often, is that the tool ends up on the shelf as just
another "purchasing mistake".

The purpose of this document is to provide the reader with a
clear understanding of what is actually required to successfully
implement cost-effective automated testing. Rather than
engage in a theoretical dissertation on this subject, I have
endeavored to be as straightforward and brutally honest as
possible in discussing the issues, problems, necessities, and
requirements involved in this enterprise.

What is "Automated Testing"?

Simply put, what is meant by "Automated Testing" is
automating the manual testing process currently in use.This

requires that a formalized "manual testing process" currently
exists in your company or organization. Minimally, such a
process includes:

Detailed test cases, including predictable "expected results",
which have been developed from Business Functional
Specifications and Design documentation

A standalone Test Environment, including a Test Database that
is restorable to a known constant, such that the test cases are
able to be repeated each time there are modifications made to
the application

If your current testing process does not include the above
points, you are never going to be able to make any effective
use of an automated test tool.

So if your "testing methodology" just involves turning the
software release over to a "testing group" comprised of
"users" or "subject matter experts" who bang on their
keyboards in some ad hoc fashion or another, then you should
not concern yourself with testing automation. There is no real
point in trying to automate something that does not exist. You
must first establish an effective testing process.

The real use and purpose of automated test tools is to
automate regression testing. This means that you must have or
must develop a database of detailed test cases that are
repeatable, and this suite of tests is run every time there is a
change to the application to ensure that the change does not
produce unintended consequences.

An "automated test script" is a program. Automated script
development, to be effective, must be subject to the same rules
and standards that are applied to software development.
Making effective use of any automated test tool requires at
least one trained, technical person – in other words, a
programmer.

Cost-Effective Automated Testing

Automated testing is expensive (contrary to what test tool
vendors would have you believe). It does not replace the need
for manual testing or enable you to "down-size" your testing
department. Automated testing is an addition to your testing
process. According to Cem Kaner, in his paper entitled
"Improving the Maintainability of Automated Test Suites"
(www.kaner.com), it can take between 3 to 10 times as long (or
longer) to develop, verify, and document an automated test
case than to create and execute a manual test case. This is
especially true if you elect to use the "record/playback" feature

http://www.kaner.com/

(contained in most test tools) as your primary automated
testing methodology. Record/Playback is the least cost-
effective method of automating test cases.

Automated testing can be made to be cost-effective, however,
if some common sense is applied to the process:

Choose a test tool that best fits the testing requirements of
your organization or company. An "Automated Testing
Handbook" is available from the Software Testing Institute
(www.ondaweb.com/sti) which covers all of the major considerations
involved in choosing the right test tool for your purposes.

Realize that it doesn’t make sense to automate some tests.
Overly complex tests are often more trouble than they are
worth to automate. Concentrate on automating the majority of
your tests, which are probably fairly straightforward. Leave the
overly complex tests for manual testing.

Only automate tests that are going to be repeated. One-time
tests are not worth automating.

Avoid using "Record/Playback" as a method of automating
testing. This method is fraught with problems, and is the most
costly (time consuming) of all methods over the long term. The
record/playback feature of the test tool is useful for
determining how the tool is trying to process or deal with the
application under test, and can give you some ideas about how
to develop your test scripts, but beyond that, its usefulness
ends quickly.

Adopt a data-driven automated testing methodology. This
allows you to develop automated test scripts that are more
"generic", requiring only that the input and expected results be
updated. There are 2 data-driven methodologies that are
useful. I will discuss both of these in detail in this paper.

The Record/Playback Myth

Every automated test tool vendor will tell you that their tool is
"easy to use" and that your non-technical user-type testers can
easily automate all of their tests by simply recording their
actions, and then playing back the recorded scripts. This one
statement alone is probably the most responsible for the
majority of automated test tool software that is gathering dust
on shelves in companies around the world. I would just love to
see one of these salespeople try it themselves in a real-world
scenario. Here’s why it doesn’t work:

http://www.ondaweb.com/sti

The scripts resulting from this method contain hard-coded
values which must change if anything at all changes in the
application.

The costs associated with maintaining such scripts are
astronomical, and unacceptable.

These scripts are not reliable, even if the application has not
changed, and often fail on replay (pop-up windows, messages,
and other things can happen that did not happen when the test
was recorded).

If the tester makes an error entering data, etc., the test must
be re-recorded.

If the application changes, the test must be re-recorded.

All that is being tested are things that already work. Areas that
have errors are encountered in the recording process (which is
manual testing, after all). These bugs are reported, but a script
cannot be recorded until the software is corrected. So what are
you testing?

After about 2 to 3 months of this nonsense, the tool gets put on
the shelf or buried in a desk drawer, and the testers get back to
manual testing. The tool vendor couldn’t care less – they are in
the business of selling test tools, not testing software.

Viable Automated Testing Methodologies

Now that we’ve eliminated Record/Playback as a reasonable
long-term automated testing strategy, let’s discuss some
methodologies that I (as well as others) have found to be
effective for automating functional or system testing for most
business applications

The "Functional Decomposition" Method

The main concept behind the "Functional Decomposition" script
development methodology is to reduce all test cases to their
most fundamental tasks, and write User-Defined Functions,
Business Function Scripts, and "Sub-routine" or "Utility"
Scripts which perform these tasks independently of one
another. In general, these fundamental areas include:

1. Navigation (e.g. "Access Payment Screen from Main
Menu")

2. Specific (Business) Function (e.g. "Post a Payment")

3. Data Verification (e.g. "Verify Payment Updates Current
Balance")

4. Return Navigation (e.g. "Return to Main Menu")

In order to accomplish this, it is necessary to separate Data from Function.
This allows an automated test script to be written for a Business Function,
using data-files to provide the both the input and the expected-results
verification. A hierarchical architecture is employed, using a structured or
modular design.

The highest level is the Driver script, which is the engine of the test. The
Driver Script contains a series of calls to one or more "Test Case" scripts.
The "Test Case" scripts contain the test case logic, calling the Business
Function scripts necessary to perform the application testing. Utility
scripts and functions are called as needed by Drivers, Main, and Business
Function scripts.

.

• Driver Scripts:
Perform initialization (if required), then call the Test
Case Scripts in the desired order.

• Test Case Scripts:
Perform the application test case logic using
Business Function Scripts

• Business Function Scripts:
Perform specific Business Functions within the
application;

• Subroutine Scripts:
Perform application specific tasks required by two
or more Business scripts;

• User-Defined Functions:

General, Application-Specific, and Screen-Access
Functions;

Note that Functions can be called from any of the
above script types.

Example:

The following steps could constitute a "Post a Payment" Test Case:

1. Access Payment Screen from Main Menu

2. Post a Payment

3. Verify Payment Updates Current Balance

4. Return to Main Menu

5. Access Account Summary Screen from Main Menu

6. Verify Account Summary Updates

7. Access Transaction History Screen from Account Summary

8. Verify Transaction History Updates

9. Return to Main Menu

A "Business Function" script and a "Subroutine" script could be
written as follows:

Payment:
Start at Main Menu

o Invoke a "Screen Navigation Function" to access the
Payment Screen

o Read a data file containing specific data to enter for this
test, and input the data

o Press the button or function-key required to Post the
payment

o Read a data file containing specific expected results data

o Compare this data to the data which is currently displayed
(actual results)

o Write any discrepancies to an Error Report

o Press button or key required to return to Main Menu or, if
required, invoke a "Screen Navigation Function" to do this.

Ver-Acct (Verify Account Summary & Transaction History):

o Start at Main Menu

o Invoke a "Screen Navigation Function" to access the
Account Summary

o Read a data file containing specific expected results data

o Compare this data to the data which is currently displayed
(actual results)

o Write any discrepancies to an Error Report

o Press button or key required to access Transaction History

o Read a data file containing specific expected results data

o Compare this data to the data which is currently displayed
(actual results)

o Write any discrepancies to an Error Report

o Press button or key to return to Main Menu or, invoke a
"Screen Navigation Function"

The "Business Function" and "Subroutine" scripts invoke "User
Defined Functions" to perform navigation. The "Test Case" script
would call these two scripts, and the Driver Script would call this
"Test Case" script some number of times required to perform all the

required Test Cases of this kind. In each case, the only thing that
changes are the data contained in the files that are read and
processed by the "Business Function" and "Subroutine" scripts.

Using this method, if we needed to process 50 different kinds of
payments in order to verify all of the possible conditions, then we
would need only 4 scripts which are re-usable for all 50 cases:

.

1. The "Driver" script

2. The "Test Case" (Post a Payment & Verify Results) script

3. The "Payment" Business Function script

4. The "Verify Account Summary & Transaction History" Subroutine
script

If we were using Record/Playback, we would now have 50 scripts,
each containing hard-coded data, that would have to be maintained.

This method, however, requires only that we add the data-files
required for each test, and these can easily be updated/maintained
using Notepad or some such text-editor. Note that updating these
files does not require any knowledge of the automated tool,
scripting, programming, etc. meaning that the non-technical testers
can perform this function, while one "technical" tester can create
and maintain the automated scripts.

It should be noticed that the "Subroutine" script, which verifies the
Account Summary and Transaction History, can also be used by
other test cases and business functions (which is why it is
classified as a "Subroutine" script rather than a "Business
Function" script) – Payment reversals, for example. This means that
if we also need to perform 50 "payment reversals", we only need to
develop three additional scripts.

.

5. The "Driver" script

6. The "Test Case" (Reverse a Payment & Verify Results) script

7. The "Payment Reversal" Business Function script

Since we already had the original 4 scripts, we can quickly clone
these three new scripts from the originals (which takes hardly any
time at all). We can use the "Subroutine" script as-is without any
modifications at all.

It ought to be obvious that this is a much more cost-effective
method than the Record/Playback method.

Advantages:

8. Utilizing a modular design, and using files or records to both input
and verify data, reduces redundancy and duplication of effort in
creating automated test scripts.

9. Scripts may be developed while application development is still in
progress. If functionality changes, only the specific "Business
Function" script needs to be updated.

10. Since scripts are written to perform and test individual Business
Functions, they can easily be combined in a "higher level" test
script in order to accommodate complex test scenarios.

11. Data input/output and expected results is stored as easily
maintainable text records. The user’s expected results are used for
verification, which is a requirement for System Testing.

12. Functions return "TRUE" or "FALSE" values to the calling script,
rather than aborting, allowing for more effective error handling, and
increasing the robustness of the test scripts. This, along with a
well-designed "recovery" routine, enables "unattended" execution
of test scripts.

Disadvantages:
13. Requires proficiency in the Scripting language used by the tool

(technical personnel);

14. Multiple data-files are required for each Test Case. There may be
any number of data-inputs and verifications required, depending on
how many different screens are accessed. This usually requires
data-files to be kept in separate directories by Test Case.

15. Tester must not only maintain the Detail Test Plan with specific
data, but must also re-enter this data in the various required data-
files.

1. If a simple "text editor" such as Notepad is used to create
and maintain the data-files, careful attention must be paid to
the format required by the scripts/functions that process the
files, or script-processing errors will occur due to data-file
format and/or content being incorrect.

1. The "Key-Word Driven" or "Test Plan Driven" Method

This method uses the actual Test Case document
developed by the tester using a spreadsheet
containing special "Key-Words". This method
preserves most of the advantages of the
"Functional Decomposition" method, while
eliminating most of the disadvantages. In this
method, the entire process is data-driven,

including functionality. The Key Words control the
processing.

Consider the following example of our previous
"Post a Payment" Test Case:

.

.

COLUMN 1

Key_Word

COLUMN 2

Field/Screen
Name

COLUMN 3

Input/Verification
Data

COLUMN 4

C

Start_Test: Screen Main Menu Verify Starting Po

Enter: Selection 3 Select Payment O

Action: Press_Key F4 Access Payment

Verify: Screen Payment Posting Verify Screen acc

Enter: Payment Amount 125.87 Enter Payment da

 Payment Method Check

Action: Press_Key F9 Process Paymen

Verify: Screen Payment Screen Verify screen rem

Verify_Data: Payment Amount $ 125.87 Verify updated da

 Current Balance $1,309.77

 Status Message Payment Posted

Action: Press_Key F12 Return to Main M

Verify: Screen Main Menu Verify return to M

.

Each of the "Key Words" in Column 1 causes a "Utility Script" to be called
which processes the remaining columns as input parameters in order to
perform specific functions. Note that this could also be run as a manual
test. The test engineer must develop and document the test case anyway –
why not create the automated test case at the same time?

The data in red indicates what would need to be changed if one
were to copy this test case to create additional tests.

.

How in the World Does This Work?

o "Templates" like the example above are created using a spreadsheet
program (e.g. MS Excel®), and then copied to create additional test cases.

o The Spreadsheet is saved as a "tab-delimited" file (input/verification data
often contains "commas", so "tab-delimited" is preferable).

o This file is read by a "Controller" script for the application, and processed.
When a Key Word is encountered, a list is created using data from the
remaining columns. This continues until a "null" (blank) in column-2 is
encountered.

o The "Controller" script then calls a Utility Script associated with the Key
Word, and passes the "list" as an input parameter.

o The Utility Script continues processing until "end-of-list", then returns to
the "Controller" script, which continues processing the file until "end-of-
file" is reached.

Architecture

The architecture of the "Test Plan Driven" method appears similar to that of
the "Functional Decomposition" method, but in fact, they are substantially
different:

o Driver Script

� Performs initialization, if required;

� Calls the Application-Specific "Controller" Script, passing to it the
file-names of the Test Cases (which have been saved from the
spreadsheets as a "tab-delimited" files);

o The "Controller" Script

� Reads and processes the file-name received from Driver;

� Matches on "Key Words" contained in the input-file

� Builds a parameter-list from the records that follow;

� Calls "Utility" scripts associated with the "Key Words", passing the
created parameter-list;

o Utility Scripts

� Process input parameter-list received from the "Controller" script;

� Perform specific tasks (e.g. press a key or button, enter data, verify
data, etc.), calling "User Defined Functions" if required;

� Report any errors to a Test Report for the test case;

� Return to "Controller" script;

o User Defined Functions

� General and Application-Specific functions may be called by any of
the above script-types in order to perform specific tasks;

Advantages:
This method has all of the advantages of the "Functional
Decomposition" method, as well as the following:

1. The Detail Test Plan can be written in Spreadsheet format containing all
input and verification data. Therefore the tester only needs to write this
once, rather than, for example, writing it in Word, and then creating input
and verification files as is required by the "Functional Decomposition"
method.

2. Test Plan does not necessarily have to be written using Excel. Any format
can be used from which either "tab-delimited" or "comma-delimited" files
can be saved (e.g. Access Database, etc.).

3. If "utility" scripts can be created by someone proficient in the Automated
tool’s Scripting language prior to the Detail Test Plan being written, then
the tester can use the Automated Test Tool immediately via the
"spreadsheet-input" method, without needing to learn the Scripting
language. The tester need only learn the "Key Words" required, and the
specific format to use within the Test Plan. This allows the tester to be
productive with the test tool very quickly, and allows more extensive
training in the test tool to be scheduled at a more convenient time.

4. If the Detail Test Plan already exists in some other format, it is not difficult
to translate this into the "spreadsheet" format.

5. After a number of "generic" Utility scripts have already been created for
testing an application, we can usually re-use most of these if we need to
test another application. This would allow the organization to get their
automated testing "up and running" (for most applications) within a few
days, rather than weeks.

Disadvantages:
1. Development of "customized" (Application-Specific) Functions and Utilities

requires proficiency in the tool’s Scripting language. Note that this is also
true of the "Functional Decomposition" method, and, frankly of any method
used including "Record/Playback".

2. If application requires more than a few "customized" Utilities, this will
require the tester to learn a number of "Key Words" and special formats.
This can be time-consuming, and may have an initial impact on Test Plan
Development. Once the testers get used to this, however, the time required
to produce a test case is greatly improved.

Cost-Effectiveness:
In the example we gave using the "Functional Decomposition" method, it
was shown that we could use previously created "Test Case" and
"Business Function" scripts to create scripts for additional Test Cases and
Business Functions. If we have 100 Business Functions to test, this means
that we must create a minimum of 200 scripts (100 Test Case scripts, and
100 Business Function scripts).

Using the "Test Plan Driven" method, I currently am using 20 Utility scripts,
that I have been able to use in every single automated testing engagement
that I have been sent on. Let us examine what it takes on an average for me
to walk into a company, and implement Automated Testing:

o Normally, I have to create a minimum of 3 application-specific utility scripts
(a "Controller" script, a "Start_Up" script, and an "End_Test" script).

o I may also have to create application-specific versions of several of the 20
"general" Utility scripts.

o It is also usually necessary to develop between 10 and 20 application-
specific "functions" (depending on how complex or strange the application
under test is). These functions include such things as activating and
shutting down the application, logging in, logging out, recovering from

unexpected errors ("return to main window"), handling objects that the tool
doesn’t recognize, etc.

o A number of "prototype" test cases must be created as a "proof of
concept". This includes developing the spreadsheet data. Sometimes test
cases that have already been developed can be used, other times I have to
create the test cases myself.

Depending on the complexity of the application, and how well the test tool
works with the application, this process normally takes me no more than 3
days – 5 days is worst-case. At this point, testers can be trained to create
the spreadsheet data (usually takes about a week) and then they are in
business. It also takes about a week to train the "test tool technician" to
use this methodology, provided that this person is a relatively competent
programmer and has already been sufficiently trained by the tool vendor in
the use of the tool.

What this demonstrates is that an organization can
implement cost-effective automated testing if they go about
it the right way.

Managing Resistance to Change

One of the main reasons organizations fail at implementing
automated testing (apart from getting mired down in the
"record/playback" quagmire) is that most testers do not
welcome what they perceive as a fundamental change to the
way they are going to have to approach their jobs. Typically,
decisions as to what tool to use and how to implement it are
made by management, often without consulting the people who
are actually doing the testing, and who are now going to have
to cope with all of this. This usually meets with a great deal of
resistance from the testers, especially when management does
not have a clearly defined idea of how to implement these
changes effectively. Let us examine some concerns that might
be expressed by testers, and some answers to these:

• The tool is going to replace the testers

This is not even remotely true. The automated testing tool is just another tool that
will allow testers to do their jobs better by:

o Performing the boring-type test cases that they now have to do over and
over again

o Freeing up some of their time so that they can create better, more effective
test cases

The testers are still going to have to perform tests manually for specific application
changes. Some of these tests may be automated afterward for regression testing.

• It will take too long to train all of the testers to use the tool

If the "test-plan-driven" method (described above) is used, the testers will not have
to learn how to use the tool at all if they don’t want to. All that they have to learn is
a different method of documenting the detailed test cases, using the key-
word/spreadsheet format. It is not that different from what they are doing currently,
and takes only a few hours to learn.

• The tool will be too difficult for testers to use
Perhaps, but as we have already discussed, they will not have to use it. What will
be required is that a "Test Tool Specialist" will need to be hired and trained to use
the tool. This can either be a person who is already an expert with the particular
tool, or can be a senior-level programmer who can easily be trained to use it. Most
test-tool vendors offer training courses.
The "test-plan-driven" testing method will eliminate most of the testers’
concerns regarding automated testing. They will perform their jobs exactly
as they do now. They will only need to learn a different method of
documenting their test cases.

.

.

Staffing Requirements

One area that organizations desiring to automate testing seem to
consistently miss is the staffing issue. Automated test tools use "scripts"
which automatically execute test cases. As I mentioned earlier in this
paper, these "test scripts" are programs. They are written in whatever
scripting language the tool uses. This might be C++ or Visual Basic, or
some language unique to the test tool. Since these are programs, they
must be managed in the same way that application code is managed.

To accomplish this, a "Test Tool Specialist" or "Automated Testing
Engineer" or some such position must be created and staffed with at least
one senior-level programmer. It does not really matter what languages the
programmer is proficient in. What does matter, is that this person must be
capable of designing , developing, testing, debugging, and documenting
code. More importantly, this person must want to do this job – most
programmers want nothing to do with the Testing Department. This is not
going to be easy, but it is nonetheless absolutely critical. In addition to
developing automated scripts and functions, this person must be
responsible for:

• Developing standards and procedures for automated script/function
development

• Developing change-management procedures for automated
script/function implementation

• Developing the details and infrastructure for a data-driven testing
method

• Testing, implementing, and Managing the test scripts
(spreadsheets) written by the testers

• Running the automated tests, and providing the testers with the
results

It is often useful to hire a contractor (like me) who knows how to set this all
up, help train the "Automation Engineer", and the testing staff, and
basically get things rolling. In my experience, this can take from two to
three weeks, or as long as two to three months, depending on the situation.
In any case, it should be a short-term assignment, and if you find someone
who really knows what they’re doing, it will be well worth it.

It is worth noting that no special "status" should granted to the automation
tester(s). The non-technical testers are just as important to the process,
and favoritism toward one or the other is counter-productive and should be
avoided. Software Testing is a profession, and as such, test engineers
should be treated as professionals. It takes just as much creativity, brain
power, and expertise to develop effective, detailed test cases from
business and design specifications as it does to write code. I have done
both, and can speak from experience.

.

.

Summary:

• Establish clear and reasonable expectations as to what can and what cannot be
accomplished with automated testing in your organization.

o Educate yourself on the subject of automated testing. Many independent
articles have been written on the subject. Get a clear idea of what you are
really getting into.

o Establish what percentage of your tests are good candidates for
automation

� Eliminate overly complex or one-of-a kind tests as candidates

• Get a clear understanding of the requirements which must be met in order to be
successful with automated testing

o Technical personnel are required to use the tool effectively

o An effective manual testing process must exist before automation is
possible. "Ad hoc" testing cannot be automated. You should have:

� Detailed, repeatable test cases, which contain exact expected
results

� A standalone test environment with a restorable database

o You are probably are going to require short-term assistance from an
outside company which specializes in setting up automated testing or a
contractor experienced in the test tool being used.

• Adopt a viable, cost-effective methodology.

o Record/Playback is too costly to maintain and is ineffective in the long term

o Functional Decomposition method is workable, but is not as cost-effective
as a totally data-driven method

o Test Plan driven method is the most cost-effective:

� Requires a minimum of technical personnel

� Requires the fewest automated scripts

� Introduces the least amount of change for the manual testers

� Test cases developed can be used for manual testing, and are
automatically usable for automated testing

• Select a tool that will allow you to implement automated testing in a way that
conforms to your long-term testing strategy. Make sure the vendor can provide
training and support.

	Professional History and Credentials:
	Introduction:
	What is "Automated Testing"?
	Cost-Effective Automated Testing
	The Record/Playback Myth
	Viable Automated Testing Methodologies
	The "Key-Word Driven" or "Test Plan Driven" Method

	Managing Resistance to Change
	Staffing Requirements
	Summary:

