
Table of Contents

1. Introduction

2. Software Testing Fundamentals

3. White Box Testing

1. The Nature of Software Defects

2. Basis Path Testing

1. Flow Graphs

2. The Basis Set

3. Deriving Test Cases

4. Automating Basis Set Derivation

3. Loop Testing

1. Simple Loops

2. Nested Loops

3. Concatenated Loops

4. Unstructured Loops

4. Other White Box Techniques

4. Black Box Testing

1. Introduction

2. Equivalence Partitioning

3. Boundary Value Analysis

4. Cause-Effect Graphing Techniques

Introduction

Because of the fallibility of its human designers and its own abstract,
complex nature, software development must be accompanied by
quality assurance activities. It is not unusual for developers to spend
40% of the total project time on testing. For life-critical software (e.g.
flight control, reactor monitoring), testing can cost 3 to 5 times as
much as all other activities combined. The destructive nature of testing
requires that the developer discard preconceived notions of the
correctness of his/her developed software.

...(BACK TO TOP)

http://www.stagsoftware.com/
http://www.stagsoftware.com/
http://www.stagsoftware.com/
http://www.stagsoftware.com/
http://www.stagsoftware.com/
http://www.stagsoftware.com/
http://www.stagsoftware.com/
http://www.stagsoftware.com/
http://www.stagsoftware.com/
http://www.stagsoftware.com/
http://www.stagsoftware.com/
http://www.stagsoftware.com/
http://www.stagsoftware.com/
http://www.stagsoftware.com/
http://www.stagsoftware.com/
http://www.stagsoftware.com/
http://www.stagsoftware.com/
http://www.stagsoftware.com/
http://www.stagsoftware.com/
http://www.stagsoftware.com/
http://www.stagsoftware.com/

Software Testing Fundamentals

Testing objectives include

1. Testing is a process of executing a program with the intent of
finding an error.

2. A good test case is one that has a high probability of finding an
as yet undiscovered error.

3. A successful test is one that uncovers an as yet undiscovered
error.

Testing should systematically uncover different classes of errors in a
minimum amount of time and with a minimum amount of effort. A
secondary benefit of testing is that it demonstrates that the software
appears to be working as stated in the specifications. The data
collected through testing can also provide an indication of the
software's reliability and quality. But, testing cannot show the absence
of defect -- it can only show that software defects are present.

...(BACK TO TOP)

White Box Testing

White box testing is a test case design method that uses the control
structure of the procedural design to derive test cases. Test cases can
be derived that

1. guarantee that all independent paths within a module have
been exercised at least once,

2. exercise all logical decisions on their true and false sides,

3. execute all loops at their boundaries and within their
operational bounds, and

4. exercise internal data structures to ensure their validity.

...(BACK TO TOP)

The Nature of Software Defects

Logic errors and incorrect assumptions are inversely proportional to
the probability that a program path will be executed. General
processing tends to be well understood while special case processing
tends to be prone to errors.

We often believe that a logical path is not likely to be executed when it
may be executed on a regular basis. Our unconscious assumptions
about control flow and data lead to design errors that can only be
detected by path testing.

Typographical errors are random.

...(BACK TO TOP)

http://www.stagsoftware.com/
http://www.stagsoftware.com/
http://www.stagsoftware.com/

Basis Path Testing
This method enables the designer to derive a logical complexity
measure of a procedural design and use it as a guide for defining a
basis set of execution paths. Test cases that exercise the basis set are
guaranteed to execute every statement in the program at least once
during testing.

Flow Graphs

Flow graphs can be used to represent control flow in a program and
can help in the derivation of the basis set. Each flow graph node
represents one or more procedural statements. The edges between
nodes represent flow of control. An edge must terminate at a node,
even if the node does not represent any useful procedural statements.
A region in a flow graph is an area bounded by edges and nodes. Each
node that contains a condition is called a predicate node. Cyclomatic
complexity is a metric that provides a quantitative measure of the
logical complexity of a program. It defines the number of independent
paths in the basis set and thus provides an upper bound for the
number of tests that must be performed.

...(BACK TO TOP)

The Basis Set

An independent path is any path through a program that introduces at
least one new set of processing statements (must move along at least
one new edge in the path). The basis set is not unique. Any number of
different basis sets can be derived for a given procedural design.
Cyclomatic complexity, V(G), for a flow graph G is equal to

1. The number of regions in the flow graph.

2. V(G) = E - N + 2 where E is the number of edges and N is the
number of nodes.

3. V(G) = P + 1 where P is the number of predicate nodes.

...(BACK TO TOP)

Deriving Test Cases

1. From the design or source code, derive a flow graph.

2. Determine the cyclomatic complexity of this flow graph.

o Even without a flow graph, V(G) can be determined by
counting the number of conditional statements in the
code.

3. Determine a basis set of linearly independent paths.

o Predicate nodes are useful for determining the necessary
paths.

http://www.stagsoftware.com/
http://www.stagsoftware.com/

4. Prepare test cases that will force execution of each path in the
basis set.

o Each test case is executed and compared to the
expected results.

...(BACK TO TOP)

Automating Basis Set Derivation

The derivation of the flow graph and the set of basis paths is amenable
to automation. A software tool to do this can be developed using a
data structure called a graph matrix. A graph matrix is a square matrix
whose size is equivalent to the number of nodes in the flow graph.
Each row and column correspond to a particular node and the matrix
corresponds to the connections (edges) between nodes. By adding a
link weight to each matrix entry, more information about the control
flow can be captured. In its simplest form, the link weight is 1 if an
edge exists and 0 if it does not. But other types of link weights can be
represented:

• the probability that an edge will be executed,

• the processing time expended during link traversal,

• the memory required during link traversal, or

• the resources required during link traversal.

Graph theory algorithms can be applied to these graph matrices to
help in the analysis necessary to produce the basis set.

...(BACK TO TOP)

Loop Testing
This white box technique focuses exclusively on the validity of loop
constructs. Four different classes of loops can be defined:

1. simple loops,

2. nested loops,

3. concatenated loops, and

4. unstructured loops.

Simple Loops

The following tests should be applied to simple loops where n is the
maximum number of allowable passes through the loop:

1. skip the loop entirely,

2. only pass once through the loop,

http://www.stagsoftware.com/
http://www.stagsoftware.com/

3. m passes through the loop where m < n,

4. n - 1, n, n + 1 passes through the loop.

Nested Loops

The testing of nested loops cannot simply extend the technique of
simple loops since this would result in a geometrically increasing
number of test cases. One approach for nested loops:

1. Start at the innermost loop. Set all other loops to minimum
values.

2. Conduct simple loop tests for the innermost loop while holding
the outer loops at their minimums. Add tests for out-of-range
or excluded values.

3. Work outward, conducting tests for the next loop while keeping
all other outer loops at minimums and other nested loops to
typical values.

4. Continue until all loops have been tested.

Concatenated Loops

Concatenated loops can be tested as simple loops if each loop is
independent of the others. If they are not independent (e.g. the loop
counter for one is the loop counter for the other), then the nested
approach can be used.

Unstructured Loops

This type of loop should be redesigned not tested!!!

...(BACK TO TOP)

Other White Box Techniques

Other white box testing techniques include:

1. Condition testing

o exercises the logical conditions in a program.

2. Data flow testing

o selects test paths according to the locations of
definitions and uses of variables in the program.

...(BACK TO TOP)

Black Box Testing

Introduction

http://www.stagsoftware.com/
http://www.stagsoftware.com/

Black box testing attempts to derive sets of inputs that will fully
exercise all the functional requirements of a system. It is not an
alternative to white box testing. This type of testing attempts to find
errors in the following categories:

1. incorrect or missing functions,

2. interface errors,

3. errors in data structures or external database access,

4. performance errors, and

5. initialization and termination errors.

Tests are designed to answer the following questions:

1. How is the function's validity tested?

2. What classes of input will make good test cases?

3. Is the system particularly sensitive to certain input values?

4. How are the boundaries of a data class isolated?

5. What data rates and data volume can the system tolerate?

6. What effect will specific combinations of data have on system
operation?

White box testing should be performed early in the testing process,
while black box testing tends to be applied during later stages. Test
cases should be derived which

1. reduce the number of additional test cases that must be
designed to achieve reasonable testing, and

2. tell us something about the presence or absence of classes of
errors, rather than an error associated only with the specific
test at hand.

...(BACK TO TOP)

Equivalence Partitioning

This method divides the input domain of a program into classes of data
from which test cases can be derived. Equivalence partitioning strives
to define a test case that uncovers classes of errors and thereby
reduces the number of test cases needed. It is based on an evaluation
of equivalence classes for an input condition. An equivalence class
represents a set of valid or invalid states for input conditions.

Equivalence classes may be defined according to the following
guidelines:

http://www.stagsoftware.com/

1. If an input condition specifies a range, one valid and two invalid
equivalence classes are defined.

2. If an input condition requires a specific value, then one valid
and two invalid equivalence classes are defined.

3. If an input condition specifies a member of a set, then one valid
and one invalid equivalence class are defined.

4. If an input condition is boolean, then one valid and one invalid
equivalence class are defined.

...(BACK TO TOP)

Boundary Value Analysis

This method leads to a selection of test cases that exercise boundary
values. It complements equivalence partitioning since it selects test
cases at the edges of a class. Rather than focusing on input conditions
solely, BVA derives test cases from the output domain also. BVA
guidelines include:

1. For input ranges bounded by a and b, test cases should include
values a and b and just above and just below a and b
respectively.

2. If an input condition specifies a number of values, test cases
should be developed to exercise the minimum and maximum
numbers and values just above and below these limits.

3. Apply guidelines 1 and 2 to the output.

4. If internal data structures have prescribed boundaries, a test
case should be designed to exercise the data structure at its
boundary.

...(BACK TO TOP)

Cause-Effect Graphing Techniques

Cause-effect graphing is a technique that provides a concise
representation of logical conditions and corresponding actions. There
are four steps:

1. Causes (input conditions) and effects (actions) are listed for a
module and an identifier is assigned to each.

2. A cause-effect graph is developed.

3. The graph is converted to a decision table.

4. Decision table rules are converted to test cases.

Author: D.A. Stacey
Date of Last Update: Wednesday, January 13, 1999 06:10:23 PM

http://www.stagsoftware.com/
http://www.stagsoftware.com/

	Table of Contents
	Introduction
	Software Testing Fundamentals
	White Box Testing
	...(BACK TO TOP) ��The Nature of Software Defects
	Basis Path Testing
	Flow Graphs
	The Basis Set
	...(BACK TO TOP) ��Deriving Test Cases
	...(BACK TO TOP) ��Automating Basis Set Derivation

	Loop Testing
	Simple Loops
	Nested Loops
	Concatenated Loops
	Unstructured Loops

	Other White Box Techniques

	Black Box Testing
	Introduction
	...(BACK TO TOP) ��Equivalence Partitioning
	...(BACK TO TOP) ��Boundary Value Analysis
	...(BACK TO TOP) ��Cause-Effect Graphing Techniques

